 4b5c36f6c0
			
		
	
	4b5c36f6c0
	
	
	
		
			
			- Reformated net.self_x functions (sa, st) - corrected robustness_exp.py - NO DEBUGGING DONE!!!!!
		
			
				
	
	
		
			121 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			121 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os.path
 | |
| import pickle
 | |
| 
 | |
| from tqdm import tqdm
 | |
| 
 | |
| from experiments.helpers import check_folder, summary_fixpoint_experiment
 | |
| from functionalities_test import test_for_fixpoints
 | |
| from network import Net
 | |
| from visualization import bar_chart_fixpoints
 | |
| from visualization import plot_3d_self_application
 | |
| 
 | |
| 
 | |
| class SelfApplicationExperiment:
 | |
|     def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size,
 | |
|                  net_learning_rate, application_steps, train_nets, directory_name, training_steps
 | |
|                  ) -> None:
 | |
|         self.population_size = population_size
 | |
|         self.log_step_size = log_step_size
 | |
|         self.net_input_size = net_input_size
 | |
|         self.net_hidden_size = net_hidden_size
 | |
|         self.net_out_size = net_out_size
 | |
| 
 | |
|         self.net_learning_rate = net_learning_rate
 | |
|         self.SA_steps = application_steps  #
 | |
| 
 | |
|         self.train_nets = train_nets
 | |
|         self.ST_steps = training_steps
 | |
| 
 | |
|         self.directory_name = directory_name
 | |
|         os.mkdir(self.directory_name)
 | |
| 
 | |
|         """ Creating the nets & making the SA steps & (maybe) also training the networks. """
 | |
|         self.nets = []
 | |
|         # Create population:
 | |
|         self.populate_environment()
 | |
| 
 | |
|         self.fixpoint_counters = {
 | |
|             "identity_func": 0,
 | |
|             "divergent": 0,
 | |
|             "fix_zero": 0,
 | |
|             "fix_weak": 0,
 | |
|             "fix_sec": 0,
 | |
|             "other_func": 0
 | |
|         }
 | |
| 
 | |
|         self.weights_evolution_3d_experiment()
 | |
|         self.count_fixpoints()
 | |
| 
 | |
|     def populate_environment(self):
 | |
|         loop_population_size = tqdm(range(self.population_size))
 | |
|         for i in loop_population_size:
 | |
|             loop_population_size.set_description("Populating SA experiment %s" % i)
 | |
| 
 | |
|             net_name = f"SA_net_{str(i)}"
 | |
| 
 | |
|             net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name
 | |
|                       )
 | |
|             for _ in range(self.SA_steps):
 | |
|                 input_data = net.input_weight_matrix()
 | |
|                 target_data = net.create_target_weights(input_data)
 | |
| 
 | |
|                 if self.train_nets == "before_SA":
 | |
|                     net.self_train(1, self.log_step_size, self.net_learning_rate)
 | |
|                     net.self_application(self.SA_steps, self.log_step_size)
 | |
|                 elif self.train_nets == "after_SA":
 | |
|                     net.self_application(self.SA_steps, self.log_step_size)
 | |
|                     net.self_train(1, self.log_step_size, self.net_learning_rate)
 | |
|                 else:
 | |
|                     net.self_application(self.SA_steps, self.log_step_size)
 | |
| 
 | |
|             self.nets.append(net)
 | |
| 
 | |
|     def weights_evolution_3d_experiment(self):
 | |
|         exp_name = f"SA_{str(len(self.nets))}_nets_3d_weights_PCA"
 | |
|         plot_3d_self_application(self.nets, exp_name, self.directory_name, self.log_step_size)
 | |
| 
 | |
|     def count_fixpoints(self):
 | |
|         test_for_fixpoints(self.fixpoint_counters, self.nets)
 | |
|         exp_details = f"{self.SA_steps} SA steps"
 | |
|         bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
 | |
|                             exp_details)
 | |
| 
 | |
| 
 | |
| def run_SA_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size,
 | |
|                       net_learning_rate, runs, run_name, name_hash, application_steps, train_nets, training_steps):
 | |
|     experiments = {}
 | |
| 
 | |
|     check_folder("self_application")
 | |
| 
 | |
|     # Running the experiments
 | |
|     for i in range(runs):
 | |
|         directory_name = f"experiments/self_application/{run_name}_run_{i}_{str(population_size)}_nets_{application_steps}_SA_{str(name_hash)}"
 | |
| 
 | |
|         SA_experiment = SelfApplicationExperiment(
 | |
|             population_size,
 | |
|             batch_size,
 | |
|             net_input_size,
 | |
|             net_hidden_size,
 | |
|             net_out_size,
 | |
|             net_learning_rate,
 | |
|             application_steps,
 | |
|             train_nets,
 | |
|             directory_name,
 | |
|             training_steps
 | |
|         )
 | |
|         pickle.dump(SA_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
 | |
|         experiments[i] = SA_experiment
 | |
| 
 | |
|     # Building a summary of all the runs
 | |
|     directory_name = f"experiments/self_application/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{application_steps}_SA_{str(name_hash)}"
 | |
|     os.mkdir(directory_name)
 | |
| 
 | |
|     summary_pre_title = "SA"
 | |
|     summary_fixpoint_experiment(runs, population_size, application_steps, experiments, net_learning_rate,
 | |
|                                 directory_name,
 | |
|                                 summary_pre_title)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     raise NotImplementedError('Test this here!!!')
 |