152 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			152 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import copy
 | |
| import os.path
 | |
| import pickle
 | |
| import random
 | |
| 
 | |
| from tqdm import tqdm
 | |
| 
 | |
| from experiments.helpers import check_folder, summary_fixpoint_experiment
 | |
| from functionalities_test import test_for_fixpoints, is_identity_function
 | |
| from network import Net
 | |
| from visualization import bar_chart_fixpoints, box_plot, write_file
 | |
| 
 | |
| 
 | |
| def add_noise(input_data, epsilon=pow(10, -5)):
 | |
| 
 | |
|     output = copy.deepcopy(input_data)
 | |
|     for k in range(len(input_data)):
 | |
|         output[k][0] += random.random() * epsilon
 | |
| 
 | |
|     return output
 | |
| 
 | |
| 
 | |
| class RobustnessExperiment:
 | |
|     def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
 | |
|                  ST_steps, directory_name) -> None:
 | |
|         self.population_size = population_size
 | |
|         self.log_step_size = log_step_size
 | |
|         self.net_input_size = net_input_size
 | |
|         self.net_hidden_size = net_hidden_size
 | |
|         self.net_out_size = net_out_size
 | |
| 
 | |
|         self.net_learning_rate = net_learning_rate
 | |
| 
 | |
|         self.ST_steps = ST_steps
 | |
|         self.fixpoint_counters = {
 | |
|             "identity_func": 0,
 | |
|             "divergent": 0,
 | |
|             "fix_zero": 0,
 | |
|             "fix_weak": 0,
 | |
|             "fix_sec": 0,
 | |
|             "other_func": 0
 | |
|         }
 | |
|         self.id_functions = []
 | |
| 
 | |
|         self.directory_name = directory_name
 | |
|         os.mkdir(self.directory_name)
 | |
| 
 | |
|         self.nets = []
 | |
|         # Create population:
 | |
|         self.populate_environment()
 | |
|         print("Nets:\n", self.nets)
 | |
| 
 | |
|         self.count_fixpoints()
 | |
|         [print(net.is_fixpoint) for net in self.nets]
 | |
|         self.test_robustness()
 | |
| 
 | |
|     def populate_environment(self):
 | |
|         loop_population_size = tqdm(range(self.population_size))
 | |
|         for i in loop_population_size:
 | |
|             loop_population_size.set_description("Populating robustness experiment %s" % i)
 | |
| 
 | |
|             net_name = f"net_{str(i)}"
 | |
|             net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
 | |
| 
 | |
|             for _ in range(self.ST_steps):
 | |
|                 net.self_train(1, self.log_step_size, self.net_learning_rate)
 | |
| 
 | |
|             self.nets.append(net)
 | |
| 
 | |
|     def test_robustness(self):
 | |
|         # test_for_fixpoints(self.fixpoint_counters, self.nets, self.id_functions)
 | |
| 
 | |
|         zero_epsilon = pow(10, -5)
 | |
|         data = [[0 for _ in range(10)] for _ in range(len(self.id_functions))]
 | |
| 
 | |
|         for i in range(len(self.id_functions)):
 | |
|             for j in range(10):
 | |
|                 original_net = self.id_functions[i]
 | |
| 
 | |
|                 # Creating a clone of the network. Not by copying it, but by creating a completely new network
 | |
|                 # and changing its weights to the original ones.
 | |
|                 original_net_clone = Net(original_net.input_size, original_net.hidden_size, original_net.out_size,
 | |
|                                          original_net.name)
 | |
|                 # Extra safety for the value of the weights
 | |
|                 original_net_clone.load_state_dict(copy.deepcopy(original_net.state_dict()))
 | |
| 
 | |
|                 noisy_weights = add_noise(original_net_clone.input_weight_matrix(), epsilon=pow(10, -j))
 | |
|                 original_net_clone.apply_weights(noisy_weights)
 | |
| 
 | |
|                 # Testing if the new net is still an identity function after applying noise
 | |
|                 still_id_func = is_identity_function(original_net_clone, zero_epsilon)
 | |
| 
 | |
|                 # If the net is still an id. func. after applying the first run of noise, continue to apply it until otherwise
 | |
|                 while still_id_func and data[i][j] <= 1000:
 | |
|                     data[i][j] += 1
 | |
| 
 | |
|                     original_net_clone = original_net_clone.self_application(1, self.log_step_size)
 | |
| 
 | |
|                     still_id_func = is_identity_function(original_net_clone, zero_epsilon)
 | |
| 
 | |
|         print(f"Data {data}")
 | |
| 
 | |
|         if data.count(0) == 10:
 | |
|             print(f"There is no network resisting the robustness test.")
 | |
|             text = f"For this population of \n {self.population_size} networks \n there is no" \
 | |
|                    f" network resisting the robustness test."
 | |
|             write_file(text, self.directory_name)
 | |
|         else:
 | |
|             box_plot(data, self.directory_name, self.population_size)
 | |
| 
 | |
|     def count_fixpoints(self):
 | |
|         exp_details = f"ST steps: {self.ST_steps}"
 | |
| 
 | |
|         self.id_functions = test_for_fixpoints(self.fixpoint_counters, self.nets)
 | |
|         bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
 | |
|                             exp_details)
 | |
| 
 | |
| 
 | |
| def run_robustness_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size,
 | |
|                               net_learning_rate, epochs, runs, run_name, name_hash):
 | |
|     experiments = {}
 | |
| 
 | |
|     check_folder("robustness")
 | |
| 
 | |
|     # Running the experiments
 | |
|     for i in range(runs):
 | |
|         ST_directory_name = f"experiments/robustness/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
 | |
| 
 | |
|         robustness_experiment = RobustnessExperiment(
 | |
|             population_size,
 | |
|             batch_size,
 | |
|             net_input_size,
 | |
|             net_hidden_size,
 | |
|             net_out_size,
 | |
|             net_learning_rate,
 | |
|             epochs,
 | |
|             ST_directory_name
 | |
|         )
 | |
|         pickle.dump(robustness_experiment, open(f"{ST_directory_name}/full_experiment_pickle.p", "wb"))
 | |
|         experiments[i] = robustness_experiment
 | |
| 
 | |
|     # Building a summary of all the runs
 | |
|     directory_name = f"experiments/robustness/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{str(name_hash)}"
 | |
|     os.mkdir(directory_name)
 | |
| 
 | |
|     summary_pre_title = "robustness"
 | |
|     summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
 | |
|                                 summary_pre_title)
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     raise NotImplementedError('Test this here!!!')
 | 
