126 lines
5.1 KiB
Python
126 lines
5.1 KiB
Python
import os
|
|
import re
|
|
from collections import defaultdict
|
|
from tqdm import tqdm
|
|
from argparse import ArgumentParser
|
|
from distutils.util import strtobool
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
import plotly as pl
|
|
from plotly import tools
|
|
import plotly.graph_objs as go
|
|
|
|
import dill
|
|
|
|
|
|
def build_args():
|
|
arg_parser = ArgumentParser()
|
|
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
|
|
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
|
|
return arg_parser.parse_args()
|
|
|
|
|
|
def numberFromStrings(string) -> list:
|
|
numberfromstring = [int(x) for x in re.findall('\d+', string)]
|
|
return numberfromstring
|
|
|
|
|
|
def visulize_as_tiled_subplot(plotting_tuple, filename='plot'):
|
|
def norm(val, a=0, b=0.25):
|
|
return (val - a) / (b - a)
|
|
|
|
data = np.asarray(plotting_tuple)
|
|
|
|
fig = tools.make_subplots(rows=1, cols=3,
|
|
subplot_titles=('Layers: 1', 'Layers: 2', 'Layers: 3'),
|
|
horizontal_spacing=0.05)
|
|
|
|
for x in range(1, 4):
|
|
# Only select Plots with x Layers
|
|
scatter_slice = data[np.where(data[:, 2] == x)]
|
|
# Only Select Plots with x Cells
|
|
scatter_slice = scatter_slice[np.where(scatter_slice[:, 1] <= 10)]
|
|
# Normalize colors
|
|
colors = scatter_slice[:, 4]
|
|
# colors = np.apply_along_axis(norm, 0, scatter_slice[:, 4])
|
|
scatter = go.Scatter(x=scatter_slice[:, 3],
|
|
y=scatter_slice[:, 1],
|
|
hoverinfo='text',
|
|
text=['Absolute Loss:<br>{}'.format(val) for val in colors],
|
|
mode='markers',
|
|
showlegend=False,
|
|
marker=dict(size=10, color=colors, colorscale='Jet',
|
|
# Only plot the colorscale once, use one for all
|
|
showscale=True if x == 1 else False,
|
|
cmax=0.25, cmin=0,
|
|
colorbar=dict(y=0.5, x=1, tickmode='array', ticks='outside',
|
|
tickvals=[0, 0.05, 0.10, 0.15, 0.20, 0.25],
|
|
ticktext=["0.00", "0.05", "0.10", "0.15", "0.20", "0.25"]
|
|
)
|
|
)
|
|
)
|
|
fig.append_trace(scatter, 1, x,)
|
|
# TODO: Layout Loop
|
|
if x == 1:
|
|
fig['layout']['yaxis{}'.format(x)].update(tickwidth=1, title='Number of Cells')
|
|
if x == 2:
|
|
fig['layout']['xaxis{}'.format(x)].update(tickwidth=1, title='Position -X')
|
|
|
|
fig['layout'].update(title='{} - Mean Absolute Loss'.format(os.path.split('DESTINATION_OR_EXPERIMENT_NAME')[-1].upper()),
|
|
height=300, width=800, margin=dict(l=50, r=0, t=60, b=50))
|
|
# import plotly.io as pio
|
|
# pio.write_image(fig, filename)
|
|
pl.offline.plot(fig, filename=filename)
|
|
pass
|
|
|
|
|
|
def visulize_as_splatter3d(plotting_tuple, filename='plot'):
|
|
# timesteps, cells, layers, positions, val
|
|
_ , cells, layers, position, val = zip(*plotting_tuple)
|
|
text = ['Cells: {}<br>Layers: {}<br>Position: {}<br>Mean(Min()): {}'.format(cells, layers, position, val)
|
|
for _, cells, layers, position, val in plotting_tuple]
|
|
|
|
data = [go.Scatter3d(x=cells, y=layers, z=position, text=text, hoverinfo='text', mode='markers',
|
|
marker=dict(color=val, colorscale='Jet', opacity=0.8,
|
|
colorbar=dict(y=0.5, x=0.9, title="Mean(Min(Seeds))"))
|
|
)]
|
|
layout = go.Layout(scene=dict(aspectratio=dict(x=2, y=2, z=1),
|
|
xaxis=dict(tickwidth=1, title='Number of Cells'),
|
|
yaxis=dict(tickwidth=1, title='Number of Layers'),
|
|
zaxis=dict(tickwidth=1, title='Position -pX')),
|
|
margin=dict(l=0, r=0, b=0, t=0))
|
|
fig = go.Figure(data=data, layout=layout)
|
|
pl.offline.plot(fig, auto_open=True, filename=filename) # filename='3d-scatter_plot'
|
|
|
|
|
|
def compile_run_name(path: str) -> dict:
|
|
"""
|
|
Retrieve all names, extract index positions and group by seeds.
|
|
|
|
:param path: Path to the current TB folder of a sinle NN configuration
|
|
:return: List of foldernames to filter for.
|
|
"""
|
|
config_keys = ['run_seed', 'timesteps', 'index_position', 'cell_count', 'layers', 'cell_type']
|
|
found_configurations = defaultdict(list)
|
|
for dname in os.listdir(path):
|
|
if os.path.isdir(os.path.join(path, dname)):
|
|
this_config = {key: value for key, value in zip(config_keys, dname.split("_"))}
|
|
found_configurations[this_config['index_position']].append(dname)
|
|
|
|
return found_configurations
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
raise NotImplementedError()
|
|
args = build_args()
|
|
in_file = args.in_file[0]
|
|
out_file = args.out_file
|
|
|
|
with open(in_file, 'rb') as dill_file:
|
|
experiment = dill.load(dill_file)
|
|
|
|
print('hi')
|