284 lines
10 KiB
Python
284 lines
10 KiB
Python
import os
|
|
|
|
from experiment import Experiment
|
|
# noinspection PyUnresolvedReferences
|
|
from soup import Soup
|
|
|
|
from argparse import ArgumentParser
|
|
import numpy as np
|
|
|
|
import plotly as pl
|
|
import plotly.graph_objs as go
|
|
|
|
import colorlover as cl
|
|
|
|
import dill
|
|
|
|
from sklearn.manifold.t_sne import TSNE, PCA
|
|
|
|
|
|
def build_args():
|
|
arg_parser = ArgumentParser()
|
|
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
|
|
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
|
|
return arg_parser.parse_args()
|
|
|
|
|
|
def build_from_soup_or_exp(soup):
|
|
particles = soup.historical_particles
|
|
particle_list = []
|
|
for particle in particles.values():
|
|
particle_dict = dict(
|
|
trajectory=[event['weights'] for event in particle],
|
|
time=[event['time'] for event in particle],
|
|
action=[event.get('action', None) for event in particle],
|
|
counterpart=[event.get('counterpart', None) for event in particle]
|
|
)
|
|
if any([x is not None for x in particle_dict['counterpart']]):
|
|
print('counterpart')
|
|
particle_list.append(particle_dict)
|
|
return particle_list
|
|
|
|
|
|
def plot_latent_trajectories(soup_or_experiment, filename='latent_trajectory_plot'):
|
|
assert isinstance(soup_or_experiment, (Experiment, Soup))
|
|
bupu = cl.scales['11']['div']['RdYlGn']
|
|
data_dict = build_from_soup_or_exp(soup_or_experiment)
|
|
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
|
|
|
|
# Fit the mebedding space
|
|
transformer = TSNE()
|
|
for particle_dict in data_dict:
|
|
array = np.asarray([np.hstack([x.flatten() for x in timestamp]).flatten()
|
|
for timestamp in particle_dict['trajectory']])
|
|
particle_dict['trajectory'] = array
|
|
transformer.fit(array)
|
|
|
|
# Transform data accordingly and plot it
|
|
data = []
|
|
for p_id, particle_dict in enumerate(data_dict):
|
|
transformed = transformer._fit(np.asarray(particle_dict['trajectory']))
|
|
line_trace = go.Scatter(
|
|
x=transformed[:, 0],
|
|
y=transformed[:, 1],
|
|
text='Hovertext goes here'.format(),
|
|
line=dict(color=scale[p_id]),
|
|
# legendgroup='Position -{}'.format(pos),
|
|
name='Particle - {}'.format(p_id),
|
|
showlegend=True,
|
|
# hoverinfo='text',
|
|
mode='lines')
|
|
line_start = go.Scatter(mode='markers', x=[transformed[0, 0]], y=[transformed[0, 1]],
|
|
marker=dict(
|
|
color='rgb(255, 0, 0)',
|
|
size=4
|
|
),
|
|
showlegend=False
|
|
)
|
|
line_end = go.Scatter(mode='markers', x=[transformed[-1, 0]], y=[transformed[-1, 1]],
|
|
marker=dict(
|
|
color='rgb(0, 0, 0)',
|
|
size=4
|
|
),
|
|
showlegend=False
|
|
)
|
|
data.extend([line_trace, line_start, line_end])
|
|
|
|
layout = dict(title='{} - Latent Trajectory Movement'.format('Penis'),
|
|
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
|
|
# import plotly.io as pio
|
|
# pio.write_image(fig, filename)
|
|
fig = go.Figure(data=data, layout=layout)
|
|
pl.offline.plot(fig, auto_open=True, filename=filename)
|
|
pass
|
|
|
|
|
|
def plot_latent_trajectories_3D(soup_or_experiment, filename='plot'):
|
|
def norm(val, a=0, b=0.25):
|
|
return (val - a) / (b - a)
|
|
|
|
data_list = build_from_soup_or_exp(soup_or_experiment)
|
|
if not data_list:
|
|
return
|
|
|
|
base_scale = cl.scales['9']['div']['RdYlGn']
|
|
# base_scale = cl.scales['9']['qual']['Set1']
|
|
scale = cl.interp(base_scale, len(data_list)+1) # Map color scale to N bins
|
|
|
|
# Fit the embedding space
|
|
transformer = PCA(n_components=2)
|
|
|
|
array = []
|
|
for particle_dict in data_list:
|
|
array.append(particle_dict['trajectory'])
|
|
|
|
transformer.fit(np.vstack(array))
|
|
|
|
# Transform data accordingly and plot it
|
|
data = []
|
|
for p_id, particle_dict in enumerate(data_list):
|
|
transformed = transformer.transform(particle_dict['trajectory'])
|
|
line_trace = go.Scatter3d(
|
|
x=transformed[:, 0],
|
|
y=transformed[:, 1],
|
|
z=np.asarray(particle_dict['time']),
|
|
text='Particle: {}<br> It had {} lifes.'.format(p_id, len(particle_dict['trajectory'])),
|
|
line=dict(
|
|
color=scale[p_id],
|
|
width=4
|
|
),
|
|
# legendgroup='Particle - {}'.format(p_id),
|
|
name='Particle -{}'.format(p_id),
|
|
showlegend=False,
|
|
hoverinfo='text',
|
|
mode='lines')
|
|
|
|
line_start = go.Scatter3d(mode='markers', x=[transformed[0, 0]], y=[transformed[0, 1]],
|
|
z=np.asarray(particle_dict['time'][0]),
|
|
marker=dict(
|
|
color='rgb(255, 0, 0)',
|
|
size=4
|
|
),
|
|
showlegend=False
|
|
)
|
|
|
|
line_end = go.Scatter3d(mode='markers', x=[transformed[-1, 0]], y=[transformed[-1, 1]],
|
|
z=np.asarray(particle_dict['time'][-1]),
|
|
marker=dict(
|
|
color='rgb(0, 0, 0)',
|
|
size=4
|
|
),
|
|
showlegend=False
|
|
)
|
|
|
|
data.extend([line_trace, line_start, line_end])
|
|
|
|
axis_layout = dict(gridcolor='rgb(255, 255, 255)',
|
|
gridwidth=3,
|
|
zerolinecolor='rgb(255, 255, 255)',
|
|
showbackground=True,
|
|
backgroundcolor='rgb(230, 230,230)',
|
|
titlefont=dict(
|
|
color='black',
|
|
size=30
|
|
)
|
|
)
|
|
|
|
layout = go.Layout(scene=dict(
|
|
# aspectratio=dict(x=2, y=2, z=2),
|
|
xaxis=dict(title='Transformed X', **axis_layout),
|
|
yaxis=dict(title='Transformed Y', **axis_layout),
|
|
zaxis=dict(title='Epoch', **axis_layout)),
|
|
# title='{} - Latent Trajectory Movement'.format('Soup'),
|
|
|
|
width=1024, height=1024,
|
|
margin=dict(l=0, r=0, b=0, t=0)
|
|
)
|
|
|
|
fig = go.Figure(data=data, layout=layout)
|
|
pl.offline.plot(fig, auto_open=True, filename=filename, validate=True)
|
|
pass
|
|
|
|
|
|
def plot_histogram(bars_dict_list, filename='histogram_plot'):
|
|
# catagorical
|
|
ryb = cl.scales['10']['div']['RdYlBu']
|
|
|
|
data = []
|
|
for bar_id, bars_dict in bars_dict_list:
|
|
hist = go.Histogram(
|
|
histfunc="count",
|
|
y=bars_dict.get('value', 14),
|
|
x=bars_dict.get('name', 'gimme a name'),
|
|
showlegend=False,
|
|
marker=dict(
|
|
color=ryb[bar_id]
|
|
),
|
|
)
|
|
data.append(hist)
|
|
|
|
layout=dict(title='{} Histogram Plot'.format('Experiment Name Penis'),
|
|
height=400, width=400, margin=dict(l=0, r=0, t=0, b=0))
|
|
|
|
fig = go.Figure(data=data, layout=layout)
|
|
pl.offline.plot(fig, auto_open=True, filename=filename)
|
|
|
|
pass
|
|
|
|
|
|
def line_plot(line_dict_list, filename='lineplot'):
|
|
# lines with standard deviation
|
|
# Transform data accordingly and plot it
|
|
data = []
|
|
rdylgn = cl.scales['10']['div']['RdYlGn']
|
|
rdylgn_background = [scale + (0.4,) for scale in cl.to_numeric(rdylgn)]
|
|
for line_id, line_dict in enumerate(line_dict_list):
|
|
name = line_dict.get('name', 'gimme a name')
|
|
|
|
upper_bound = go.Scatter(
|
|
name='Upper Bound',
|
|
x=line_dict['x'],
|
|
y=line_dict['upper_y'],
|
|
mode='lines',
|
|
marker=dict(color="#444"),
|
|
line=dict(width=0),
|
|
fillcolor=rdylgn_background[line_id],
|
|
)
|
|
|
|
trace = go.Scatter(
|
|
x=line_dict['x'],
|
|
y=line_dict['main_y'],
|
|
mode='lines',
|
|
name=name,
|
|
line=dict(color=line_id),
|
|
fillcolor=rdylgn_background[line_id],
|
|
fill='tonexty')
|
|
|
|
lower_bound = go.Scatter(
|
|
name='Lower Bound',
|
|
x=line_dict['x'],
|
|
y=line_dict['lower_y'],
|
|
marker=dict(color="#444"),
|
|
line=dict(width=0),
|
|
mode='lines')
|
|
|
|
data.extend([upper_bound, trace, lower_bound])
|
|
|
|
layout=dict(title='{} Line Plot'.format('Experiment Name Penis'),
|
|
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
|
|
|
|
fig = go.Figure(data=data, layout=layout)
|
|
pl.offline.plot(fig, auto_open=True, filename=filename)
|
|
pass
|
|
|
|
|
|
def search_and_apply(absolut_file_or_folder, plotting_function, files_to_look_for=[]):
|
|
if os.path.isdir(absolut_file_or_folder):
|
|
for sub_file_or_folder in os.scandir(absolut_file_or_folder):
|
|
search_and_apply(sub_file_or_folder.path, plotting_function, files_to_look_for=files_to_look_for)
|
|
elif absolut_file_or_folder.endswith('.dill'):
|
|
file_or_folder = os.path.split(absolut_file_or_folder)[-1]
|
|
if file_or_folder in files_to_look_for and not os.path.exists('{}.html'.format(absolut_file_or_folder[:-5])):
|
|
print('Apply Plotting function "{func}" on file "{file}"'.format(func=plotting_function.__name__,
|
|
file=absolut_file_or_folder)
|
|
)
|
|
with open(absolut_file_or_folder, 'rb') as in_f:
|
|
exp = dill.load(in_f)
|
|
try:
|
|
plotting_function(exp, filename='{}.html'.format(absolut_file_or_folder[:-5]))
|
|
except ValueError:
|
|
pass
|
|
except AttributeError:
|
|
pass
|
|
else:
|
|
# This was either another FilyType or Plot.html alerady exists.
|
|
pass
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = build_args()
|
|
in_file = args.in_file[0]
|
|
out_file = args.out_file
|
|
|
|
search_and_apply(in_file, plot_latent_trajectories_3D, ["trajectorys.dill", "soup.dill"])
|