self-replicating-neural-net.../functionalities_test.py
2022-03-06 22:24:00 +01:00

98 lines
3.4 KiB
Python

import copy
from typing import Dict, List
import torch
from tqdm import tqdm
from network import FixTypes, Net
epsilon_error_margin = pow(10, -5)
def is_divergent(network: Net) -> bool:
return network.input_weight_matrix().isinf().any().item() or network.input_weight_matrix().isnan().any().item()
def is_identity_function(network: Net, epsilon=epsilon_error_margin) -> bool:
input_data = network.input_weight_matrix()
target_data = network.create_target_weights(input_data)
predicted_values = network(input_data)
return torch.allclose(target_data.detach(), predicted_values.detach(),
rtol=0, atol=epsilon)
def is_zero_fixpoint(network: Net, epsilon=epsilon_error_margin) -> bool:
target_data = network.create_target_weights(network.input_weight_matrix().detach())
result = torch.allclose(target_data, torch.zeros_like(target_data), rtol=0, atol=epsilon)
# result = bool(len(np.nonzero(network.create_target_weights(network.input_weight_matrix()))))
return result
def is_secondary_fixpoint(network: Net, epsilon: float = epsilon_error_margin) -> bool:
""" Secondary fixpoint check is done like this: compare first INPUT with second OUTPUT.
If they are within the boundaries, then is secondary fixpoint. """
input_data = network.input_weight_matrix()
target_data = network.create_target_weights(input_data)
# Calculating first output
first_output = network(input_data)
# Getting the second output by initializing a new net with the weights of the original net.
net_copy = copy.deepcopy(network)
net_copy.apply_weights(first_output)
input_data_2 = net_copy.input_weight_matrix()
# Calculating second output
second_output = network(input_data_2)
# Perform the Check: all(epsilon > abs(input_data - second_output))
check_abs_within_epsilon = torch.allclose(target_data.detach(), second_output.detach(),
rtol=0, atol=epsilon)
return check_abs_within_epsilon
def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None):
id_functions = id_functions or list()
for net in tqdm(nets, desc='Fixpoint Tester', total=len(nets)):
if is_divergent(net):
fixpoint_counter[FixTypes.divergent] += 1
net.is_fixpoint = FixTypes.divergent
elif is_zero_fixpoint(net):
fixpoint_counter[FixTypes.fix_zero] += 1
net.is_fixpoint = FixTypes.fix_zero
elif is_identity_function(net): # is default value
fixpoint_counter[FixTypes.identity_func] += 1
net.is_fixpoint = FixTypes.identity_func
id_functions.append(net)
elif is_secondary_fixpoint(net):
fixpoint_counter[FixTypes.fix_sec] += 1
net.is_fixpoint = FixTypes.fix_sec
else:
fixpoint_counter[FixTypes.other_func] += 1
net.is_fixpoint = FixTypes.other_func
return id_functions
def changing_rate(x_new, x_old):
return x_new - x_old
def test_status(net: Net) -> Net:
if is_divergent(net):
net.is_fixpoint = FixTypes.divergent
elif is_identity_function(net): # is default value
net.is_fixpoint = FixTypes.identity_func
elif is_zero_fixpoint(net):
net.is_fixpoint = FixTypes.fix_zero
elif is_secondary_fixpoint(net):
net.is_fixpoint = FixTypes.fix_sec
else:
net.is_fixpoint = FixTypes.other_func
return net