2021-05-03 08:37:31 +02:00

109 lines
4.3 KiB
Python

import sys
import os
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from typing import Tuple
from util import *
from experiment import *
from network import *
from soup import *
import keras.backend
def generate_counters():
"""
Initial build of the counter dict, to store counts.
:rtype: dict
:return: dictionary holding counter for: 'divergent', 'fix_zero', 'fix_sec', 'other'
"""
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
def count(counters, soup, notable_nets=[]):
"""
Count the occurences ot the types of weight trajectories.
:param counters: A counter dictionary.
:param soup: A Soup
:param notable_nets: A list to store and save intersting candidates
:rtype Tuple[dict, list]
:return: Both the counter dictionary and the list of interessting nets.
"""
for net in soup.particles:
if net.is_diverged():
counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
counters['fix_zero'] += 1
else:
counters['fix_other'] += 1
# notable_nets += [net]
# elif net.is_fixpoint(2):
# counters['fix_sec'] += 1
# notable_nets += [net]
else:
counters['other'] += 1
return counters, notable_nets
if __name__ == '__main__':
with Experiment('mixed-soup') as exp:
exp.trials = 10
exp.soup_size = 10
exp.soup_life = 5
exp.trains_per_selfattack_values = [10 * i for i in range(11)]
exp.epsilon = 1e-4
net_generators = []
for activation in ['linear']: # ['linear', 'sigmoid', 'relu']:
for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
all_names = []
all_data = []
for net_generator_id, net_generator in enumerate(net_generators):
xs = []
ys = []
zs = []
for trains_per_selfattack in exp.trains_per_selfattack_values:
counters = generate_counters()
notable_nets = []
for soup_idx in tqdm(range(exp.trials)):
soup = Soup(exp.soup_size,
lambda net_generator=net_generator, exp=exp: TrainingNeuralNetworkDecorator(
net_generator()).with_params(epsilon=exp.epsilon))
soup.with_params(attacking_rate=0.1, learn_from_rate=-1, train=trains_per_selfattack,
learn_from_severity=-1)
soup.seed()
name = str(soup.particles[0].net.__class__.__name__) + " activiation='" + str(
soup.particles[0].get_keras_params().get('activation')) + "' use_bias=" + str(
soup.particles[0].get_keras_params().get('use_bias'))
for _ in range(exp.soup_life):
soup.evolve()
count(counters, soup, notable_nets)
keras.backend.clear_session()
xs += [trains_per_selfattack]
ys += [float(counters['fix_zero']) / float(exp.trials)]
zs += [float(counters['fix_other']) / float(exp.trials)]
all_names += [name]
# xs: how many trains per self-attack from exp.trains_per_selfattack_values
# ys: average amount of zero-fixpoints found
# zs: average amount of non-zero fixpoints
all_data += [{'xs': xs, 'ys': ys, 'zs': zs}]
exp.save(all_names=all_names)
exp.save(all_data=all_data)
for exp_id, name in enumerate(all_names):
exp.log(all_names[exp_id])
exp.log(all_data[exp_id])
exp.log('\n')