727 lines
27 KiB
Python
727 lines
27 KiB
Python
import numpy as np
|
|
|
|
from tensorflow.python.keras.models import Sequential
|
|
from tensorflow.python.keras.callbacks import Callback
|
|
from tensorflow.python.keras.layers import SimpleRNN, Dense
|
|
from tensorflow.python.keras import backend as K
|
|
|
|
from util import *
|
|
from experiment import *
|
|
|
|
# Supress warnings and info messages
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
|
|
|
|
class SaveStateCallback(Callback):
|
|
def __init__(self, net, epoch=0):
|
|
super(SaveStateCallback, self).__init__()
|
|
self.net = net
|
|
self.init_epoch = epoch
|
|
|
|
def on_epoch_end(self, epoch, logs={}):
|
|
description = dict(time=epoch+self.init_epoch)
|
|
description['action'] = 'train_self'
|
|
description['counterpart'] = None
|
|
self.net.save_state(**description)
|
|
return
|
|
|
|
|
|
class NeuralNetwork(PrintingObject):
|
|
|
|
@staticmethod
|
|
def weights_to_string(weights):
|
|
s = ""
|
|
for layer_id, layer in enumerate(weights):
|
|
for cell_id, cell in enumerate(layer):
|
|
s += "[ "
|
|
for weight_id, weight in enumerate(cell):
|
|
s += str(weight) + " "
|
|
s += "]"
|
|
s += "\n"
|
|
return s
|
|
|
|
@staticmethod
|
|
def are_weights_diverged(network_weights):
|
|
for layer_id, layer in enumerate(network_weights):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
if np.isnan(weight):
|
|
return True
|
|
if np.isinf(weight):
|
|
return True
|
|
return False
|
|
|
|
@staticmethod
|
|
def are_weights_within(network_weights, lower_bound, upper_bound):
|
|
for layer_id, layer in enumerate(network_weights):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
# could be a chain comparission "lower_bound <= weight <= upper_bound"
|
|
if not (lower_bound <= weight and weight <= upper_bound):
|
|
return False
|
|
return True
|
|
|
|
@staticmethod
|
|
def fill_weights(old_weights, new_weights_list):
|
|
new_weights = copy.deepcopy(old_weights)
|
|
current_weight_id = 0
|
|
for layer_id, layer in enumerate(new_weights):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
new_weight = new_weights_list[current_weight_id]
|
|
new_weights[layer_id][cell_id][weight_id] = new_weight
|
|
current_weight_id += 1
|
|
return new_weights
|
|
|
|
def __init__(self, **params):
|
|
super().__init__()
|
|
self.params = dict(epsilon=0.00000000000001)
|
|
self.params.update(params)
|
|
self.keras_params = dict(activation='linear', use_bias=False)
|
|
self.states = []
|
|
|
|
def get_model(self):
|
|
raise NotImplementedError
|
|
|
|
def get_params(self):
|
|
return self.params
|
|
|
|
def get_keras_params(self):
|
|
return self.keras_params
|
|
|
|
def with_params(self, **kwargs):
|
|
self.params.update(kwargs)
|
|
return self
|
|
|
|
def with_keras_params(self, **kwargs):
|
|
self.keras_params.update(kwargs)
|
|
return self
|
|
|
|
def get_weights(self):
|
|
return self.model.get_weights()
|
|
|
|
def get_weights_flat(self):
|
|
return np.hstack([weight.flatten() for weight in self.get_weights()])
|
|
|
|
def set_weights(self, new_weights):
|
|
return self.model.set_weights(new_weights)
|
|
|
|
def apply_to_weights(self, old_weights):
|
|
raise NotImplementedError
|
|
|
|
def apply_to_network(self, other_network):
|
|
new_weights = self.apply_to_weights(other_network.get_weights())
|
|
return new_weights
|
|
|
|
def attack(self, other_network):
|
|
other_network.set_weights(self.apply_to_network(other_network))
|
|
return self
|
|
|
|
def fuck(self, other_network):
|
|
self.set_weights(self.apply_to_network(other_network))
|
|
return self
|
|
|
|
def self_attack(self, iterations=1):
|
|
for _ in range(iterations):
|
|
self.attack(self)
|
|
return self
|
|
|
|
def meet(self, other_network):
|
|
new_other_network = copy.deepcopy(other_network)
|
|
return self.attack(new_other_network)
|
|
|
|
def is_diverged(self):
|
|
return self.are_weights_diverged(self.get_weights())
|
|
|
|
def is_zero(self, epsilon=None):
|
|
epsilon = epsilon or self.get_params().get('epsilon')
|
|
return self.are_weights_within(self.get_weights(), -epsilon, epsilon)
|
|
|
|
def is_fixpoint(self, degree=1, epsilon=None):
|
|
assert degree >= 1, "degree must be >= 1"
|
|
epsilon = epsilon or self.get_params().get('epsilon')
|
|
old_weights = self.get_weights()
|
|
new_weights = copy.deepcopy(old_weights)
|
|
|
|
for _ in range(degree):
|
|
new_weights = self.apply_to_weights(new_weights)
|
|
|
|
if NeuralNetwork.are_weights_diverged(new_weights):
|
|
return False
|
|
for layer_id, layer in enumerate(old_weights):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
new_weight = new_weights[layer_id][cell_id][weight_id]
|
|
if abs(new_weight - weight) >= epsilon:
|
|
return False
|
|
return True
|
|
|
|
def repr_weights(self, weights=None):
|
|
return self.weights_to_string(weights or self.get_weights())
|
|
|
|
def print_weights(self, weights=None):
|
|
print(self.repr_weights(weights))
|
|
|
|
|
|
class ParticleDecorator:
|
|
next_uid = 0
|
|
|
|
def __init__(self, net):
|
|
self.uid = self.__class__.next_uid
|
|
self.__class__.next_uid += 1
|
|
self.net = net
|
|
self.states = []
|
|
self.save_state(time=0,
|
|
action='init',
|
|
counterpart=None
|
|
)
|
|
|
|
def __getattr__(self, name):
|
|
return getattr(self.net, name)
|
|
|
|
def get_uid(self):
|
|
return self.uid
|
|
|
|
def make_state(self, **kwargs):
|
|
weights = self.net.get_weights_flat()
|
|
if any(np.isinf(weights)) or any(np.isnan(weights)):
|
|
return None
|
|
state = {'class': self.net.__class__.__name__, 'weights': weights}
|
|
state.update(kwargs)
|
|
return state
|
|
|
|
def save_state(self, **kwargs):
|
|
state = self.make_state(**kwargs)
|
|
if state is not None:
|
|
self.states += [state]
|
|
else:
|
|
pass
|
|
|
|
def update_state(self, number, **kwargs):
|
|
raise NotImplementedError('Result is vague')
|
|
if number < len(self.states):
|
|
self.states[number] = self.make_state(**kwargs)
|
|
else:
|
|
for i in range(len(self.states), number):
|
|
self.states += [None]
|
|
self.states += self.make_state(**kwargs)
|
|
|
|
def get_states(self):
|
|
return self.states
|
|
|
|
|
|
class WeightwiseNeuralNetwork(NeuralNetwork):
|
|
|
|
@staticmethod
|
|
def normalize_id(value, norm):
|
|
if norm > 1:
|
|
return float(value) / float(norm)
|
|
else:
|
|
return float(value)
|
|
|
|
def __init__(self, width, depth, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.width = width
|
|
self.depth = depth
|
|
self.model = Sequential()
|
|
self.model.add(Dense(units=self.width, input_dim=4, **self.keras_params))
|
|
for _ in range(self.depth-1):
|
|
self.model.add(Dense(units=self.width, **self.keras_params))
|
|
self.model.add(Dense(units=1, **self.keras_params))
|
|
|
|
def get_model(self):
|
|
return self.model
|
|
|
|
def apply(self, *inputs):
|
|
stuff = np.transpose(np.array([[inputs[0]], [inputs[1]], [inputs[2]], [inputs[3]]]))
|
|
return self.model.predict(stuff)[0][0]
|
|
|
|
@classmethod
|
|
def compute_all_duplex_weight_points(cls, old_weights):
|
|
points = []
|
|
normal_points = []
|
|
max_layer_id = len(old_weights) - 1
|
|
for layer_id, layer in enumerate(old_weights):
|
|
max_cell_id = len(layer) - 1
|
|
for cell_id, cell in enumerate(layer):
|
|
max_weight_id = len(cell) - 1
|
|
for weight_id, weight in enumerate(cell):
|
|
normal_layer_id = cls.normalize_id(layer_id, max_layer_id)
|
|
normal_cell_id = cls.normalize_id(cell_id, max_cell_id)
|
|
normal_weight_id = cls.normalize_id(weight_id, max_weight_id)
|
|
|
|
points += [[weight, layer_id, cell_id, weight_id]]
|
|
normal_points += [[weight, normal_layer_id, normal_cell_id, normal_weight_id]]
|
|
return points, normal_points
|
|
|
|
@classmethod
|
|
def compute_all_weight_points(cls, all_weights):
|
|
return cls.compute_all_duplex_weight_points(all_weights)[0]
|
|
|
|
@classmethod
|
|
def compute_all_normal_weight_points(cls, all_weights):
|
|
return cls.compute_all_duplex_weight_points(all_weights)[1]
|
|
|
|
def apply_to_weights(self, old_weights):
|
|
new_weights = copy.deepcopy(self.get_weights())
|
|
for (weight_point, normal_weight_point) in zip(*self.__class__.compute_all_duplex_weight_points(old_weights)):
|
|
weight, layer_id, cell_id, weight_id = weight_point
|
|
_, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point
|
|
|
|
new_weight = self.apply(*normal_weight_point)
|
|
new_weights[layer_id][cell_id][weight_id] = new_weight
|
|
|
|
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
|
print("updated old weight {weight}\t @ ({layer},{cell},{weight_id}) "
|
|
"to new value {new_weight}\t calling @ ({normal_layer},{normal_cell},{normal_weight_id})").format(
|
|
weight=weight, layer=layer_id, cell=cell_id, weight_id=weight_id, new_weight=new_weight,
|
|
normal_layer=normal_layer_id, normal_cell=normal_cell_id, normal_weight_id=normal_weight_id)
|
|
return new_weights
|
|
|
|
def compute_samples(self):
|
|
samples = []
|
|
for normal_weight_point in self.compute_all_normal_weight_points(self.get_weights()):
|
|
weight, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point
|
|
|
|
sample = np.transpose(np.array([[weight], [normal_layer_id], [normal_cell_id], [normal_weight_id]]))
|
|
samples += [sample[0]]
|
|
samples_array = np.asarray(samples)
|
|
return samples_array, samples_array[:, 0]
|
|
|
|
|
|
class AggregatingNeuralNetwork(NeuralNetwork):
|
|
|
|
@staticmethod
|
|
def aggregate_average(weights):
|
|
total = 0
|
|
count = 0
|
|
for weight in weights:
|
|
total += float(weight)
|
|
count += 1
|
|
return total / float(count)
|
|
|
|
@staticmethod
|
|
def aggregate_max(weights):
|
|
max_found = weights[0]
|
|
for weight in weights:
|
|
max_found = weight > max_found and weight or max_found
|
|
return max_found
|
|
|
|
@staticmethod
|
|
def deaggregate_identically(aggregate, amount):
|
|
return [aggregate for _ in range(amount)]
|
|
|
|
@staticmethod
|
|
def shuffle_not(weights_list):
|
|
return weights_list
|
|
|
|
@staticmethod
|
|
def shuffle_random(weights_list):
|
|
import random
|
|
random.shuffle(weights_list)
|
|
return weights_list
|
|
|
|
def __init__(self, aggregates, width, depth, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.aggregates = aggregates
|
|
self.width = width
|
|
self.depth = depth
|
|
self.model = Sequential()
|
|
self.model.add(Dense(units=width, input_dim=self.aggregates, **self.keras_params))
|
|
for _ in range(depth-1):
|
|
self.model.add(Dense(units=width, **self.keras_params))
|
|
self.model.add(Dense(units=self.aggregates, **self.keras_params))
|
|
|
|
def get_model(self):
|
|
return self.model
|
|
|
|
def get_aggregator(self):
|
|
return self.params.get('aggregator', self.aggregate_average)
|
|
|
|
def get_deaggregator(self):
|
|
return self.params.get('deaggregator', self.deaggregate_identically)
|
|
|
|
def get_shuffler(self):
|
|
return self.params.get('shuffler', self.shuffle_not)
|
|
|
|
def get_amount_of_weights(self):
|
|
total_weights = 0
|
|
for layer_id, layer in enumerate(self.get_weights()):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
total_weights += 1
|
|
return total_weights
|
|
|
|
def apply(self, *inputs):
|
|
stuff = np.transpose(np.array([[inputs[i]] for i in range(self.aggregates)]))
|
|
return self.model.predict(stuff)[0]
|
|
|
|
def apply_to_weights(self, old_weights):
|
|
# build aggregations from old_weights
|
|
collection_size = self.get_amount_of_weights() // self.aggregates
|
|
collections, leftovers = self.collect_weights(old_weights, collection_size)
|
|
|
|
# call network
|
|
old_aggregations = [self.get_aggregator()(collection) for collection in collections]
|
|
new_aggregations = self.apply(*old_aggregations)
|
|
|
|
# generate list of new weights
|
|
new_weights_list = []
|
|
for aggregation_id, aggregation in enumerate(new_aggregations):
|
|
if aggregation_id == self.aggregates - 1:
|
|
new_weights_list += self.get_deaggregator()(aggregation, collection_size + leftovers)
|
|
else:
|
|
new_weights_list += self.get_deaggregator()(aggregation, collection_size)
|
|
new_weights_list = self.get_shuffler()(new_weights_list)
|
|
|
|
# write back new weights
|
|
new_weights = self.fill_weights(old_weights, new_weights_list)
|
|
|
|
# return results
|
|
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
|
print("updated old weight aggregations " + str(old_aggregations))
|
|
print("to new weight aggregations " + str(new_aggregations))
|
|
print("resulting in network weights ...")
|
|
print(self.weights_to_string(new_weights))
|
|
return new_weights
|
|
|
|
@staticmethod
|
|
def collect_weights(all_weights, collection_size):
|
|
collections = []
|
|
next_collection = []
|
|
current_weight_id = 0
|
|
for layer_id, layer in enumerate(all_weights):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
next_collection += [weight]
|
|
if (current_weight_id + 1) % collection_size == 0:
|
|
collections += [next_collection]
|
|
next_collection = []
|
|
current_weight_id += 1
|
|
collections[-1] += next_collection
|
|
leftovers = len(next_collection)
|
|
return collections, leftovers
|
|
|
|
def get_collected_weights(self):
|
|
collection_size = self.get_amount_of_weights() // self.aggregates
|
|
return self.collect_weights(self.get_weights(), collection_size)
|
|
|
|
def get_aggregated_weights(self):
|
|
collections, leftovers = self.get_collected_weights()
|
|
aggregations = [self.get_aggregator()(collection) for collection in collections]
|
|
return aggregations, leftovers
|
|
|
|
def compute_samples(self):
|
|
aggregations, _ = self.get_aggregated_weights()
|
|
sample = np.transpose(np.array([[aggregations[i]] for i in range(self.aggregates)]))
|
|
return [sample], [sample]
|
|
|
|
def is_fixpoint_after_aggregation(self, degree=1, epsilon=None):
|
|
assert degree >= 1, "degree must be >= 1"
|
|
epsilon = epsilon or self.get_params().get('epsilon')
|
|
|
|
old_weights = self.get_weights()
|
|
old_aggregations, _ = self.get_aggregated_weights()
|
|
|
|
new_weights = copy.deepcopy(old_weights)
|
|
for _ in range(degree):
|
|
new_weights = self.apply_to_weights(new_weights)
|
|
if NeuralNetwork.are_weights_diverged(new_weights):
|
|
return False
|
|
collection_size = self.get_amount_of_weights() // self.aggregates
|
|
collections, leftovers = self.__class__.collect_weights(new_weights, collection_size)
|
|
new_aggregations = [self.get_aggregator()(collection) for collection in collections]
|
|
|
|
for aggregation_id, old_aggregation in enumerate(old_aggregations):
|
|
new_aggregation = new_aggregations[aggregation_id]
|
|
if abs(new_aggregation - old_aggregation) >= epsilon:
|
|
return False, new_aggregations
|
|
return True, new_aggregations
|
|
|
|
|
|
class FFTNeuralNetwork(NeuralNetwork):
|
|
|
|
@staticmethod
|
|
def aggregate_fft(weights, dims):
|
|
flat = np.hstack([weight.flatten() for weight in weights])
|
|
fft_reduction = np.fft.fftn(flat, dims)[None, ...]
|
|
return fft_reduction
|
|
|
|
@staticmethod
|
|
def deaggregate_identically(aggregate, dims):
|
|
fft_inverse = np.fft.ifftn(aggregate, dims)
|
|
return fft_inverse
|
|
|
|
@staticmethod
|
|
def shuffle_not(weights_list):
|
|
return weights_list
|
|
|
|
@staticmethod
|
|
def shuffle_random(weights_list):
|
|
import random
|
|
random.shuffle(weights_list)
|
|
return weights_list
|
|
|
|
def __init__(self, aggregates, width, depth, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.aggregates = aggregates
|
|
self.width = width
|
|
self.depth = depth
|
|
self.model = Sequential()
|
|
self.model.add(Dense(units=width, input_dim=self.aggregates, **self.keras_params))
|
|
for _ in range(depth-1):
|
|
self.model.add(Dense(units=width, **self.keras_params))
|
|
self.model.add(Dense(units=self.aggregates, **self.keras_params))
|
|
|
|
def get_model(self):
|
|
return self.model
|
|
|
|
def get_shuffler(self):
|
|
return self.params.get('shuffler', self.shuffle_not)
|
|
|
|
def get_amount_of_weights(self):
|
|
total_weights = 0
|
|
for layer_id, layer in enumerate(self.get_weights()):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
total_weights += 1
|
|
return total_weights
|
|
|
|
def apply(self, inputs):
|
|
sample = np.asarray(inputs)
|
|
return self.model.predict(sample)[0]
|
|
|
|
def apply_to_weights(self, old_weights):
|
|
# build aggregations from old_weights
|
|
weights = self.get_weights_flat()
|
|
|
|
# call network
|
|
old_aggregation = self.aggregate_fft(weights, self.aggregates)
|
|
new_aggregation = self.apply(old_aggregation)
|
|
|
|
# generate list of new weights
|
|
new_weights_list = self.deaggregate_identically(new_aggregation, self.get_amount_of_weights())
|
|
|
|
new_weights_list = self.get_shuffler()(new_weights_list)
|
|
|
|
# write back new weights
|
|
new_weights = self.fill_weights(old_weights, new_weights_list)
|
|
|
|
# return results
|
|
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
|
print("updated old weight aggregations " + str(old_aggregation))
|
|
print("to new weight aggregations " + str(new_aggregation))
|
|
print("resulting in network weights ...")
|
|
print(self.__class__.weights_to_string(new_weights))
|
|
return new_weights
|
|
|
|
def compute_samples(self):
|
|
weights = self.get_weights()
|
|
sample = np.asarray(weights)[None, ...]
|
|
return [sample], [sample]
|
|
|
|
|
|
class RecurrentNeuralNetwork(NeuralNetwork):
|
|
|
|
def __init__(self, width, depth, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.features = 1
|
|
self.width = width
|
|
self.depth = depth
|
|
self.model = Sequential()
|
|
self.model.add(SimpleRNN(units=width, input_dim=self.features, return_sequences=True, **self.keras_params))
|
|
for _ in range(depth-1):
|
|
self.model.add(SimpleRNN(units=width, return_sequences=True, **self.keras_params))
|
|
self.model.add(SimpleRNN(units=self.features, return_sequences=True, **self.keras_params))
|
|
|
|
def get_model(self):
|
|
return self.model
|
|
|
|
def apply(self, *inputs):
|
|
stuff = np.transpose(np.array([[[inputs[i]] for i in range(len(inputs))]]))
|
|
return self.model.predict(stuff)[0].flatten()
|
|
|
|
def apply_to_weights(self, old_weights):
|
|
# build list from old weights
|
|
new_weights = copy.deepcopy(old_weights)
|
|
old_weights_list = []
|
|
for layer_id, layer in enumerate(old_weights):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
old_weights_list += [weight]
|
|
|
|
# call network
|
|
new_weights_list = self.apply(*old_weights_list)
|
|
|
|
# write back new weights from list of rnn returns
|
|
current_weight_id = 0
|
|
for layer_id, layer in enumerate(new_weights):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
new_weight = new_weights_list[current_weight_id]
|
|
new_weights[layer_id][cell_id][weight_id] = new_weight
|
|
current_weight_id += 1
|
|
return new_weights
|
|
|
|
def compute_samples(self):
|
|
# build list from old weights
|
|
old_weights_list = []
|
|
for layer_id, layer in enumerate(self.get_weights()):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
old_weights_list += [weight]
|
|
sample = np.asarray(old_weights_list)[None, ..., None]
|
|
return sample, sample
|
|
|
|
|
|
class TrainingNeuralNetworkDecorator():
|
|
|
|
def __init__(self, net, **kwargs):
|
|
self.net = net
|
|
self.compile_params = dict(loss='mse', optimizer='sgd')
|
|
self.model_compiled = False
|
|
|
|
def __getattr__(self, name):
|
|
return getattr(self.net, name)
|
|
|
|
def with_params(self, **kwargs):
|
|
self.net.with_params(**kwargs)
|
|
return self
|
|
|
|
def with_keras_params(self, **kwargs):
|
|
self.net.with_keras_params(**kwargs)
|
|
return self
|
|
|
|
def get_compile_params(self):
|
|
return self.compile_params
|
|
|
|
def with_compile_params(self, **kwargs):
|
|
self.compile_params.update(kwargs)
|
|
return self
|
|
|
|
def compile_model(self, **kwargs):
|
|
compile_params = copy.deepcopy(self.compile_params)
|
|
compile_params.update(kwargs)
|
|
return self.net.model.compile(**compile_params)
|
|
|
|
def compiled(self, **kwargs):
|
|
if not self.model_compiled:
|
|
self.compile_model(**kwargs)
|
|
self.model_compiled = True
|
|
return self
|
|
|
|
def train(self, batchsize=1, store_states=True, epoch=0):
|
|
self.compiled()
|
|
x, y = self.net.compute_samples()
|
|
savestatecallback = [SaveStateCallback(net=self, epoch=epoch)] if store_states else None
|
|
history = self.net.model.fit(x=x, y=y, epochs=epoch+1, verbose=0, batch_size=batchsize, callbacks=savestatecallback, initial_epoch=epoch)
|
|
return history.history['loss'][-1]
|
|
|
|
def learn_from(self, other_network, batchsize=1):
|
|
self.compiled()
|
|
other_network.compiled()
|
|
x, y = other_network.net.compute_samples()
|
|
history = self.net.model.fit(x=x, y=y, verbose=0, batch_size=batchsize)
|
|
|
|
return history.history['loss'][-1]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
def run_exp(net, prints=False):
|
|
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
|
|
exp.run_net(net, 100, run_id=run_id + 1)
|
|
exp.historical_particles[run_id] = net
|
|
if prints:
|
|
print("Fixpoint? " + str(net.is_fixpoint()))
|
|
print("Loss " + str(loss))
|
|
|
|
if True:
|
|
# WeightWise Neural Network
|
|
with FixpointExperiment() as exp:
|
|
for run_id in tqdm(range(100)):
|
|
net = ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2) \
|
|
.with_keras_params(activation='linear'))
|
|
run_exp(net)
|
|
K.clear_session()
|
|
exp.log(exp.counters)
|
|
|
|
if True:
|
|
# Aggregating Neural Network
|
|
with FixpointExperiment() as exp:
|
|
for run_id in tqdm(range(100)):
|
|
net = ParticleDecorator(AggregatingNeuralNetwork(aggregates=4, width=2, depth=2) \
|
|
.with_keras_params())
|
|
run_exp(net)
|
|
K.clear_session()
|
|
exp.log(exp.counters)
|
|
|
|
if True:
|
|
#FFT Neural Network
|
|
with FixpointExperiment() as exp:
|
|
for run_id in tqdm(range(100)):
|
|
net = ParticleDecorator(FFTNeuralNetwork(aggregates=4, width=2, depth=2) \
|
|
.with_keras_params(activation='linear'))
|
|
run_exp(net)
|
|
K.clear_session()
|
|
exp.log(exp.counters)
|
|
|
|
if True:
|
|
# ok so this works quite realiably
|
|
with FixpointExperiment() as exp:
|
|
for i in range(1):
|
|
run_count = 1000
|
|
net = TrainingNeuralNetworkDecorator(ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2)))
|
|
net.with_params(epsilon=0.0001).with_keras_params(optimizer='sgd')
|
|
for run_id in tqdm(range(run_count+1)):
|
|
net.compiled()
|
|
loss = net.train(epoch=run_id)
|
|
if run_id % 100 == 0:
|
|
run_exp(net)
|
|
K.clear_session()
|
|
|
|
if False:
|
|
with FixpointExperiment() as exp:
|
|
run_count = 1000
|
|
net = TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, width=2, depth=2)).with_params(epsilon=0.1e-6)
|
|
for run_id in tqdm(range(run_count+1)):
|
|
loss = net.compiled().train()
|
|
if run_id % 100 == 0:
|
|
net.print_weights()
|
|
old_aggs, _ = net.net.get_aggregated_weights()
|
|
print("old weights agg: " + str(old_aggs))
|
|
fp, new_aggs = net.net.is_fixpoint_after_aggregation(epsilon=0.0001)
|
|
print("new weights agg: " + str(new_aggs))
|
|
print("Fixpoint? " + str(net.is_fixpoint()))
|
|
print("Fixpoint after Agg? " + str(fp))
|
|
print("Loss " + str(loss))
|
|
print()
|
|
|
|
if False:
|
|
# this explodes in our faces completely... NAN everywhere
|
|
# TODO: Wtf is happening here?
|
|
with FixpointExperiment() as exp:
|
|
run_count = 10000
|
|
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2))\
|
|
.with_params(epsilon=0.1e-2).with_keras_params(optimizer='sgd', activation='linear')
|
|
for run_id in tqdm(range(run_count+1)):
|
|
loss = net.compiled().train()
|
|
if run_id % 500 == 0:
|
|
net.print_weights()
|
|
# print(net.apply_to_network(net))
|
|
print("Fixpoint? " + str(net.is_fixpoint()))
|
|
print("Loss " + str(loss))
|
|
print()
|
|
if False:
|
|
# and this gets somewhat interesting... we can still achieve non-trivial fixpoints
|
|
# over multiple applications when training enough in-between
|
|
with MixedFixpointExperiment() as exp:
|
|
for run_id in range(10):
|
|
net = TrainingNeuralNetworkDecorator(FFTNeuralNetwork(2, width=2, depth=2))\
|
|
.with_params(epsilon=0.0001, activation='sigmoid')
|
|
exp.run_net(net, 500, 10)
|
|
|
|
net.print_weights()
|
|
|
|
print("Fixpoint? " + str(net.is_fixpoint()))
|
|
exp.log(exp.counters)
|