import sys import os # Concat top Level dir to system environmental variables sys.path += os.path.join('..', '.') from typing import Tuple from util import * from experiment import * from network import * from soup import * import keras.backend def generate_counters(): """ Initial build of the counter dict, to store counts. :rtype: dict :return: dictionary holding counter for: 'divergent', 'fix_zero', 'fix_sec', 'other' """ return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0} def count(counters, soup, notable_nets=[]): """ Count the occurences ot the types of weight trajectories. :param counters: A counter dictionary. :param soup: A Soup :param notable_nets: A list to store and save intersting candidates :rtype Tuple[dict, list] :return: Both the counter dictionary and the list of interessting nets. """ for net in soup.particles: if net.is_diverged(): counters['divergent'] += 1 elif net.is_fixpoint(): if net.is_zero(): counters['fix_zero'] += 1 else: counters['fix_other'] += 1 # notable_nets += [net] # elif net.is_fixpoint(2): # counters['fix_sec'] += 1 # notable_nets += [net] else: counters['other'] += 1 return counters, notable_nets if __name__ == '__main__': with Experiment('mixed-soup') as exp: exp.trials = 10 exp.soup_size = 10 exp.soup_life = 5 exp.trains_per_selfattack_values = [10 * i for i in range(11)] exp.epsilon = 1e-4 net_generators = [] for activation in ['linear']: # ['linear', 'sigmoid', 'relu']: for use_bias in [False]: net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] # net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] all_names = [] all_data = [] for net_generator_id, net_generator in enumerate(net_generators): xs = [] ys = [] zs = [] for trains_per_selfattack in exp.trains_per_selfattack_values: counters = generate_counters() notable_nets = [] for soup_idx in tqdm(range(exp.trials)): soup = Soup(exp.soup_size, lambda net_generator=net_generator, exp=exp: TrainingNeuralNetworkDecorator( net_generator()).with_params(epsilon=exp.epsilon)) soup.with_params(attacking_rate=0.1, learn_from_rate=-1, train=trains_per_selfattack, learn_from_severity=-1) soup.seed() name = str(soup.particles[0].net.__class__.__name__) + " activiation='" + str( soup.particles[0].get_keras_params().get('activation')) + "' use_bias=" + str( soup.particles[0].get_keras_params().get('use_bias')) for _ in range(exp.soup_life): soup.evolve() count(counters, soup, notable_nets) keras.backend.clear_session() xs += [trains_per_selfattack] ys += [float(counters['fix_zero']) / float(exp.trials)] zs += [float(counters['fix_other']) / float(exp.trials)] all_names += [name] # xs: how many trains per self-attack from exp.trains_per_selfattack_values # ys: average amount of zero-fixpoints found # zs: average amount of non-zero fixpoints all_data += [{'xs': xs, 'ys': ys, 'zs': zs}] exp.save(all_names=all_names) exp.save(all_data=all_data) for exp_id, name in enumerate(all_names): exp.log(all_names[exp_id]) exp.log(all_data[exp_id]) exp.log('\n')