import copy import itertools from pathlib import Path import random import pandas as pd import numpy as np import torch from functionalities_test import is_identity_function, test_status from journal_basins import SpawnExperiment, prng, mean_invariate_manhattan_distance from network import Net from sklearn.metrics import mean_absolute_error as MAE from sklearn.metrics import mean_squared_error as MSE import seaborn as sns from matplotlib import pyplot as plt class SpawnLinspaceExperiment(SpawnExperiment): def spawn_and_continue(self, number_clones: int = None): number_clones = number_clones or self.nr_clones df = pd.DataFrame( columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', 'status_post']) # For every initial net {i} after populating (that is fixpoint after first epoch); pairwise_net_list = itertools.combinations(self.parents, 2) for net1, net2 in pairwise_net_list: # We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to # to see full trajectory (but the clones will be very hard to see). # Make one target to compare distances to clones later when they have trained. net1.start_time = self.ST_steps - 150 net1_input_data = net1.input_weight_matrix() net1_target_data = net1.create_target_weights(net1_input_data) net2.start_time = self.ST_steps - 150 net2_input_data = net2.input_weight_matrix() net2_target_data = net2.create_target_weights(net2_input_data) if is_identity_function(net1) and is_identity_function(net2): # Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly; # To plot clones starting after first epoch (z=ST_steps), set that as start_time! # To make sure PCA will plot the same trajectory up until this point, we clone the # parent-net's weight history as well. in_between_weights = np.linspace(net1_target_data, net2_target_data, number_clones,endpoint=False) for j, in_between_weight in enumerate(in_between_weights): clone = Net(net1.input_size, net1.hidden_size, net1.out_size, name=f"{net1.name}_clone_{str(j)}", start_time=self.ST_steps) clone.apply_weights(torch.as_tensor(in_between_weight)) clone.s_train_weights_history = copy.deepcopy(net1.s_train_weights_history) clone.number_trained = copy.deepcopy(net1.number_trained) # Pre Training distances (after noise application of course) clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix()) MAE_pre = MAE(net1_target_data, clone_pre_weights) MSE_pre = MSE(net1_target_data, clone_pre_weights) MIM_pre = mean_invariate_manhattan_distance(net1_target_data, clone_pre_weights) # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) .. for _ in range(self.epochs - 1): for _ in range(self.ST_steps): clone.self_train(1, self.log_step_size, self.net_learning_rate) # Post Training distances for comparison clone_post_weights = clone.create_target_weights(clone.input_weight_matrix()) MAE_post = MAE(net1_target_data, clone_post_weights) MSE_post = MSE(net1_target_data, clone_post_weights) MIM_post = mean_invariate_manhattan_distance(net1_target_data, clone_post_weights) # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. test_status(clone) if is_identity_function(clone): print(f"Clone {j} (of net_{net1.name}) is fixpoint." f"\nMSE({net1.name},{j}): {MSE_post}" f"\nMAE({net1.name},{j}): {MAE_post}" f"\nMIM({net1.name},{j}): {MIM_post}\n") self.nets.append(clone) df.loc[clone.name] = [net1.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, clone.is_fixpoint] for parent in self.parents: for _ in range(self.epochs - 1): for _ in range(self.ST_steps): parent.self_train(1, self.log_step_size, self.net_learning_rate) self.df = df if __name__ == '__main__': NET_INPUT_SIZE = 4 NET_OUT_SIZE = 1 # Define number of runs & name: ST_runs = 1 ST_runs_name = "test-27" ST_steps = 2000 ST_epochs = 2 ST_log_step_size = 10 # Define number of networks & their architecture nr_clones = 3 ST_population_size = 3 ST_net_hidden_size = 2 ST_net_learning_rate = 0.04 ST_name_hash = random.getrandbits(32) print(f"Running the Spawn experiment:") df = SpawnLinspaceExperiment( population_size=ST_population_size, log_step_size=ST_log_step_size, net_input_size=NET_INPUT_SIZE, net_hidden_size=ST_net_hidden_size, net_out_size=NET_OUT_SIZE, net_learning_rate=ST_net_learning_rate, epochs=ST_epochs, st_steps=ST_steps, nr_clones=nr_clones, noise=None, directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'linage' ).df # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis sns.countplot(data=df, x="noise", hue="status_post") plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png") # Catplot (either kind="point" or "box") that shows before-after training distances to parent mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance') sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False) plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png")