import sys import os from typing import Tuple # Concat top Level dir to system environmental variables sys.path += os.path.join('..', '.') from util import * from experiment import * from network import * import keras.backend def generate_counters(): """ Initial build of the counter dict, to store counts. :rtype: dict :return: dictionary holding counter for: 'divergent', 'fix_zero', 'fix_sec', 'other' """ return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0} def count(counters, net, notable_nets=[]): """ Count the occurences ot the types of weight trajectories. :param counters: A counter dictionary. :param net: A Neural Network :param notable_nets: A list to store and save intersting candidates :rtype Tuple[dict, list] :return: Both the counter dictionary and the list of interessting nets. """ if net.is_diverged(): counters['divergent'] += 1 elif net.is_fixpoint(): if net.is_zero(): counters['fix_zero'] += 1 else: counters['fix_other'] += 1 notable_nets += [net] elif net.is_fixpoint(2): counters['fix_sec'] += 1 notable_nets += [net] else: counters['other'] += 1 return counters, notable_nets if __name__ == '__main__': with Experiment('mixed-self-fixpoints') as exp: exp.trials = 20 exp.selfattacks = 4 exp.trains_per_selfattack_values = [50 * i for i in range(11)] exp.epsilon = 1e-4 net_generators = [] for activation in ['linear']: # , 'sigmoid', 'relu']: for use_bias in [False]: net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] # net_generators += [lambda activation=activation, use_bias=use_bias: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] all_names = [] all_data = [] for net_generator_id, net_generator in enumerate(net_generators): xs = [] ys = [] for trains_per_selfattack in exp.trains_per_selfattack_values: counters = generate_counters() notable_nets = [] for _ in tqdm(range(exp.trials)): net = ParticleDecorator(net_generator()) net = TrainingNeuralNetworkDecorator(net).with_params(epsilon=exp.epsilon) name = str(net.net.net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias=" + str(net.get_keras_params().get('use_bias')) for selfattack_id in range(exp.selfattacks): net.self_attack() for train_id in range(trains_per_selfattack): loss = net.compiled().train(epoch=selfattack_id*trains_per_selfattack+train_id) if net.is_diverged() or net.is_fixpoint(): break count(counters, net, notable_nets) keras.backend.clear_session() xs += [trains_per_selfattack] ys += [float(counters['fix_zero'] + counters['fix_other']) / float(exp.trials)] all_names += [name] # xs: how many trains per self-attack from exp.trains_per_selfattack_values # ys: average amount of fixpoints found all_data += [{'xs': xs, 'ys': ys}] exp.save(all_names=all_names) exp.save(all_data=all_data) for exp_id, name in enumerate(all_names): exp.log(all_names[exp_id]) exp.log(all_data[exp_id]) exp.log('\n')