import os from experiment import Experiment # noinspection PyUnresolvedReferences from soup import Soup from argparse import ArgumentParser import numpy as np import plotly as pl import plotly.graph_objs as go import colorlover as cl import dill from sklearn.manifold.t_sne import TSNE, PCA def build_args(): arg_parser = ArgumentParser() arg_parser.add_argument('-i', '--in_file', nargs=1, type=str) arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str) return arg_parser.parse_args() def line_plot(names_exp_tuple, filename='lineplot'): names, line_dict_list = names_exp_tuple names = ['Weightwise', 'Aggregating', 'Recurrent'] if False: data = [] base_scale = cl.scales['10']['div']['RdYlGn'] scale = cl.interp(base_scale, len(line_dict_list) + 1) # Map color scale to N bins for ld_id, line_dict in enumerate(line_dict_list): for data_point in ['ys', 'zs']: trace = go.Scatter( x=line_dict['xs'], y=line_dict[data_point], name='{} {}zero-fixpoints'.format(names[ld_id], 'non-' if data_point == 'zs' else ''), line=dict( # color=scale[ld_id], width=5, # dash='dash' if data_point == 'ys' else '' ), ) data.append(trace) if True: data = [] base_scale = cl.scales['10']['div']['RdYlGn'] scale = cl.interp(base_scale, len(line_dict_list) + 1) # Map color scale to N bins for ld_id, line_dict in enumerate(line_dict_list): trace = go.Scatter( x=line_dict['xs'], y=line_dict['ys'], name=names[ld_id], line=dict( # color=scale[ld_id], width=5 ), ) data.append(trace) layout = dict(xaxis=dict(title='Trains per self-application', titlefont=dict(size=20)), yaxis=dict(title='Average amount of fixpoints found', titlefont=dict(size=20), # type='log', # range=[0, 2] ), legend=dict(orientation='h', x=0.3, y=-0.3), # height=800, width=800, margin=dict(b=0) ) fig = go.Figure(data=data, layout=layout) pl.offline.plot(fig, auto_open=True, filename=filename) pass def search_and_apply(absolut_file_or_folder, plotting_function, files_to_look_for=[]): if os.path.isdir(absolut_file_or_folder): for sub_file_or_folder in os.scandir(absolut_file_or_folder): search_and_apply(sub_file_or_folder.path, plotting_function, files_to_look_for=files_to_look_for) elif absolut_file_or_folder.endswith('.dill'): file_or_folder = os.path.split(absolut_file_or_folder)[-1] if file_or_folder in files_to_look_for and not os.path.exists('{}.html'.format(absolut_file_or_folder[:-5])): print('Apply Plotting function "{func}" on file "{file}"'.format(func=plotting_function.__name__, file=absolut_file_or_folder) ) with open(absolut_file_or_folder, 'rb') as in_f: exp = dill.load(in_f) names_dill_location = os.path.join(*os.path.split(absolut_file_or_folder)[:-1], 'all_names.dill') with open(names_dill_location, 'rb') as in_f: names = dill.load(in_f) try: plotting_function((names, exp), filename='{}.html'.format(absolut_file_or_folder[:-5])) except ValueError: pass except AttributeError: pass else: # This was either another FilyType or Plot.html alerady exists. pass if __name__ == '__main__': args = build_args() in_file = args.in_file[0] out_file = args.out_file search_and_apply(in_file, line_plot, ["all_data.dill"])