{ "cells": [ { "cell_type": "code", "execution_count": 222, "metadata": {}, "outputs": [], "source": [ "from network import Net\n", "import torch\n", "from typing import List\n", "from functionalities_test import is_identity_function" ] }, { "cell_type": "code", "execution_count": 255, "metadata": {}, "outputs": [], "source": [ "nr_nets = 5\n", "nets = [Net(4,2,1) for _ in range(nr_nets)]\n", "\n", "loss_fn = torch.nn.MSELoss()\n", "optimizer = torch.optim.SGD([param for net in nets for param in net.parameters()], lr=0.004, momentum=0.9)" ] }, { "cell_type": "code", "execution_count": 256, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 256, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum([is_identity_function(net) for net in nets])" ] }, { "cell_type": "code", "execution_count": 247, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(torch.Size([14, 20]), torch.Size([14, 5]))" ] }, "execution_count": 247, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X = torch.hstack( [net.input_weight_matrix() for net in nets] ) #(nr_nets*nr_weights, nr_weights)\n", "Y = torch.hstack( [net.create_target_weights(net.input_weight_matrix()) for net in nets] ) #(nr_nets*nr_weights,1)\n", "X.shape, Y.shape" ] }, { "cell_type": "code", "execution_count": 270, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[tensor(indices=tensor([[ 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,\n", " 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6,\n", " 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9],\n", " [ 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 4, 5,\n", " 6, 7, 8, 9, 10, 11, 8, 9, 10, 11, 12, 13, 14, 15,\n", " 12, 13, 14, 15, 16, 17, 18, 19, 16, 17, 18, 19]]),\n", " values=tensor([-0.0282, 0.1612, 0.0717, -0.1370, -0.0789, 0.0990,\n", " -0.0642, 0.1385, -0.1046, 0.1522, -0.0691, 0.0848,\n", " -0.1419, -0.0465, -0.0385, 0.1453, -0.0263, 0.1401,\n", " 0.0758, 0.1022, 0.1218, -0.1423, 0.0556, 0.0150,\n", " 0.0598, -0.0347, -0.0717, 0.1173, 0.0126, -0.0164,\n", " -0.0359, 0.0895, 0.1545, -0.1091, 0.0925, 0.0687,\n", " 0.1330, 0.1297, 0.0305, 0.1811]),\n", " size=(10, 20), nnz=40, layout=torch.sparse_coo, requires_grad=True),\n", " tensor(indices=tensor([[0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9,\n", " 9],\n", " [0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 8,\n", " 9]]),\n", " values=tensor([-0.1608, 0.0952, 0.0369, 0.0105, -0.0277, 0.0216,\n", " 0.0991, 0.1250, 0.0618, 0.2241, 0.0602, 0.1144,\n", " -0.0330, -0.1240, 0.0456, -0.1208, -0.1859, 0.1333,\n", " 0.1235, -0.1774]),\n", " size=(10, 10), nnz=20, layout=torch.sparse_coo, requires_grad=True),\n", " tensor(indices=tensor([[0, 0, 1, 1, 2, 2, 3, 3, 4, 4],\n", " [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),\n", " values=tensor([ 0.0585, 0.1856, -0.0987, 0.2342, -0.0376, 0.0765,\n", " -0.1395, 0.1574, -0.0103, -0.0933]),\n", " size=(5, 10), nnz=10, layout=torch.sparse_coo, requires_grad=True)]" ] }, "execution_count": 270, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def construct_sparse_tensor_layer(nets:List[Net], layer_idx:int) -> torch.Tensor:\n", " assert layer_idx <= len(list(nets[0].parameters()))\n", " values = []\n", " indices = []\n", " for net_idx,net in enumerate(nets):\n", " layer = list(net.parameters())[layer_idx]\n", " \n", " for cell_idx,cell in enumerate(layer):\n", " # E.g., position of cell weights (with 2 cells per hidden layer) in first sparse layer of N nets: \n", " # [4x2 weights_net0] [4x2x(n-1) 0s]\n", " # [4x2 weights] [4x2 weights_net0] [4x2x(n-2) 0s]\n", " # ... etc\n", " # [4x2x(n-1) 0s] [4x2 weights_netN]\n", " # -> 4x2 weights on the diagonal = [shifted Nr_cellss*B down for AxB cells, and Nr_nets(*A weights)to the right] \n", " for i in range(len(cell)):\n", " indices.append([len(layer)*net_idx + cell_idx, net_idx*len(cell) + i ])\n", " #indices.append([2*net_idx + cell_idx, net_idx*len(cell) + i ])\n", "\n", " [values.append(weight) for weight in cell]\n", " # for i in range(4):\n", " # indices.append([idx+idx+1, i+(idx*4)])\n", " #for l in next(net.parameters()):\n", " #[values.append(w) for w in l]\n", " #print(indices, values)\n", "\n", " #s = torch.sparse_coo_tensor(list(zip(*indices)), values, (2*nr_nets, 4*nr_nets))\n", " # sparse tensor dimension = (nr_cells*nr_nets , nr_weights/cell * nr_nets), i.e.,\n", " # layer 1: (2x4) -> (2*N, 4*N)\n", " # layer 2: (2x2) -> (2*N, 2*N)\n", " # layer 3: (1x2) -> (2*N, 1*N)\n", " s = torch.sparse_coo_tensor(list(zip(*indices)), values, (len(layer)*nr_nets, len(cell)*nr_nets),requires_grad=True)\n", " #print(s.to_dense())\n", " #print(s.to_dense().shape)\n", " return s\n", "\n", "\n", "# for each net append to the combined sparse tensor\n", "# construct sparse tensor for each layer, with Nets of (4,2,1), each net appends\n", "# - [4x2] weights in the first (input) layer\n", "# - [2x2] weights in the second (hidden) layer\n", "# - [2x1] weights in the third (output) layer\n", "modules = [ construct_sparse_tensor_layer(nets, layer_idx) for layer_idx in range(len(list(nets[0].parameters()))) ]\n", "modules\n", "#for layer_idx in range(len(list(nets[0].parameters()))):\n", "# sparse_tensor = construct_sparse_tensor_layer(nets, layer_idx)" ] }, { "cell_type": "code", "execution_count": 295, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "before: 0/5000 identity_fns\n", "after 1 iterations of combined self_train: 0/5000 identity_fns\n" ] } ], "source": [ "nr_nets = 5000\n", "nets = [Net(4,2,1) for _ in range(nr_nets)]\n", "print(f\"before: {sum([is_identity_function(net) for net in nets])}/{len(nets)} identity_fns\")\n", "\n", "loss_fn = torch.nn.MSELoss(reduction=\"sum\")\n", "optimizer = torch.optim.SGD([param for net in nets for param in net.parameters()], lr=0.004, momentum=0.9)\n", "\n", "\n", "for train_iteration in range(1):\n", " optimizer.zero_grad() \n", " X = torch.hstack( [net.input_weight_matrix() for net in nets] ).requires_grad_(True).T #(nr_nets*nr_weights, nr_weights)\n", " Y = torch.hstack( [net.create_target_weights(net.input_weight_matrix()) for net in nets] ).requires_grad_(True).T #(nr_nets*nr_weights,1)\n", " #print(\"X \", X.shape, \"Y\", Y.shape)\n", "\n", " modules = [ construct_sparse_tensor_layer(nets, layer_idx) for layer_idx in range(len(list(nets[0].parameters()))) ]\n", "\n", " X1 = torch.sparse.mm(modules[0], X)\n", " #print(\"X1\", X1.shape, X1)\n", "\n", " X2 = torch.sparse.mm(modules[1], X1)\n", " #print(\"X2\", X2.shape)\n", "\n", " X3 = torch.sparse.mm(modules[2], X2)\n", " #print(\"X3\", X3.shape)\n", "\n", " loss = loss_fn(X3, Y)\n", " #print(loss)\n", " loss.backward()\n", " optimizer.step()\n", "\n", "print(f\"after {train_iteration+1} iterations of combined self_train: {sum([is_identity_function(net) for net in nets])}/{len(nets)} identity_fns\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "8bcba732c17ca4dacffea8ad1176c852d4229b36b9060a5f633fff752e5396ea" }, "kernelspec": { "display_name": "Python 3.8.12 64-bit ('masterthesis': conda)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }