# from __future__ import annotations import copy from typing import Union import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from torch import optim, Tensor class Net(nn.Module): @staticmethod def create_target_weights(input_weight_matrix: Tensor) -> Tensor: """ Outputting a tensor with the target weights. """ target_weight_matrix = np.arange(len(input_weight_matrix)).reshape(len(input_weight_matrix), 1).astype("f") for i in range(len(input_weight_matrix)): target_weight_matrix[i] = input_weight_matrix[i][0] return torch.from_numpy(target_weight_matrix) @staticmethod def are_weights_diverged(network_weights): """ Testing if the weights are eiter converging to infinity or -infinity. """ for layer_id, layer in enumerate(network_weights): for cell_id, cell in enumerate(layer): for weight_id, weight in enumerate(cell): if np.isnan(weight): return True if np.isinf(weight): return True return False def apply_weights(self, new_weights: Tensor): """ Changing the weights of a network to new given values. """ i = 0 for layer_id, layer_name in enumerate(self.state_dict()): for line_id, line_values in enumerate(self.state_dict()[layer_name]): for weight_id, weight_value in enumerate(self.state_dict()[layer_name][line_id]): self.state_dict()[layer_name][line_id][weight_id] = new_weights[i] i += 1 return self def __init__(self, i_size: int, h_size: int, o_size: int, name=None, start_time=1) -> None: super().__init__() self.start_time = start_time self.name = name self.input_size = i_size self.hidden_size = h_size self.out_size = o_size self.no_weights = h_size * (i_size + h_size * (h_size - 1) + o_size) """ Data saved in self.s_train_weights_history & self.s_application_weights_history is used for experiments. """ self.s_train_weights_history = [] self.s_application_weights_history = [] self.loss_history = [] self.trained = False self.number_trained = 0 self.is_fixpoint = "" self.fc1 = nn.Linear(i_size, h_size, False) self.fc2 = nn.Linear(h_size, h_size, False) self.fc3 = nn.Linear(h_size, o_size, False) def forward(self, x): x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x def normalize(self, value, norm): """ Normalizing the values >= 1 and adding pow(10, -8) to the values equal to 0 """ if norm > 1: return float(value) / float(norm) else: return float(value) def input_weight_matrix(self) -> Tensor: """ Calculating the input tensor formed from the weights of the net """ # The "4" represents the weightwise coordinates used for the matrix: weight_matrix = np.arange(self.no_weights * 4).reshape(self.no_weights, 4).astype("f") i = 0 max_layer_id = len(self.state_dict()) - 1 for layer_id, layer_name in enumerate(self.state_dict()): max_cell_id = len(self.state_dict()[layer_name]) - 1 for line_id, line_values in enumerate(self.state_dict()[layer_name]): max_weight_id = len(line_values) - 1 for weight_id, weight_value in enumerate(self.state_dict()[layer_name][line_id]): weight_matrix[i] = weight_value.item(), self.normalize(layer_id, max_layer_id), self.normalize(line_id, max_cell_id), self.normalize(weight_id, max_weight_id) i += 1 return torch.from_numpy(weight_matrix) def self_train(self, training_steps: int, log_step_size: int, learning_rate: float) -> (np.ndarray, Tensor, list): """ Training a network to predict its own weights in order to self-replicate. """ optimizer = optim.SGD(self.parameters(), lr=learning_rate, momentum=0.9) self.trained = True for training_step in range(training_steps): self.number_trained += 1 optimizer.zero_grad() input_data = self.input_weight_matrix() target_data = self.create_target_weights(input_data) output = self(input_data) loss = F.mse_loss(output, target_data) loss.backward() optimizer.step() # Saving the history of the weights after a certain amount of steps (aka log_step_size) for research. # If it is a soup/mixed env. save weights only at the end of all training steps (aka a soup/mixed epoch) if "soup" not in self.name and "mixed" not in self.name: weights = self.create_target_weights(self.input_weight_matrix()) # If self-training steps are lower than 10, then append weight history after each ST step. if self.number_trained < 10: self.s_train_weights_history.append(weights.T.detach().numpy()) self.loss_history.append(loss.detach().numpy().item()) else: if self.number_trained % log_step_size == 0: self.s_train_weights_history.append(weights.T.detach().numpy()) self.loss_history.append(loss.detach().numpy().item()) weights = self.create_target_weights(self.input_weight_matrix()) # Saving weights only at the end of a soup/mixed exp. epoch. if "soup" in self.name or "mixed" in self.name: self.s_train_weights_history.append(weights.T.detach().numpy()) self.loss_history.append(loss.detach().numpy().item()) return weights.detach().numpy(), loss, self.loss_history def self_application(self, SA_steps: int, log_step_size: Union[int, None] = None): """ Inputting the weights of a network to itself for a number of steps, without backpropagation. """ for i in range(SA_steps): output = self(self.input_weight_matrix()) # Saving the weights history after a certain amount of steps (aka log_step_size) for research purposes. # If self-application steps are lower than 10, then append weight history after each SA step. if SA_steps < 10: self.s_application_weights_history.append(output.T.detach().numpy()) else: if i % log_step_size == 0: self.s_application_weights_history.append(output.T.detach().numpy()) """ See after how many steps of SA is the output not changing anymore: """ # print(f"Self-app. step {i+1}: {Experiment.changing_rate(output2, output)}") self = self.apply_weights(output) return self def attack(self, other_net): other_net_weights = other_net.input_weight_matrix() my_evaluation = self(other_net_weights) SA_steps = 1 return other_net.apply_weights(my_evaluation)