foundations

This commit is contained in:
Si11ium
2019-03-14 16:40:29 +01:00
parent 7d45a9d8be
commit fd215be5de
7 changed files with 23 additions and 12 deletions

View File

@ -0,0 +1,8 @@
ParticleDecorator activiation='linear' use_bias=False
{'xs': [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000], 'ys': [0.45, 0.4, 0.6, 0.8, 0.95, 0.85, 0.95, 0.85, 0.9, 1.0, 0.8]}
ParticleDecorator activiation='linear' use_bias=False
{'xs': [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000], 'ys': [0.95, 0.9, 0.9, 0.9, 0.95, 0.8, 0.9, 0.9, 0.85, 0.85, 0.9]}

View File

@ -37,7 +37,7 @@ if __name__ == '__main__':
for activation in ['linear', 'sigmoid', 'relu']: for activation in ['linear', 'sigmoid', 'relu']:
net_generators += [lambda activation=activation: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)] net_generators += [lambda activation=activation: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)] net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
net_generators += [lambda activation=activation: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)] # net_generators += [lambda activation=activation: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
# net_generators += [lambda activation=activation: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)] # net_generators += [lambda activation=activation: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
all_counters = [] all_counters = []
all_notable_nets = [] all_notable_nets = []
@ -52,7 +52,7 @@ if __name__ == '__main__':
count(counters, net, notable_nets) count(counters, net, notable_nets)
keras.backend.clear_session() keras.backend.clear_session()
all_counters += [counters] all_counters += [counters]
all_notable_nets += [notable_nets] # all_notable_nets += [notable_nets]
all_names += [name] all_names += [name]
exp.save(all_counters=all_counters) exp.save(all_counters=all_counters)
exp.save(all_notable_nets=all_notable_nets) exp.save(all_notable_nets=all_notable_nets)

View File

@ -61,15 +61,15 @@ def count(counters, soup, notable_nets=[]):
with SoupExperiment('learn-from-soup') as exp: with SoupExperiment('learn-from-soup') as exp:
exp.soup_size = 10 exp.soup_size = 10
exp.soup_life = 100 exp.soup_life = 1000
exp.trials = 10 exp.trials = 20
exp.learn_from_severity_values = [10 * i for i in range(11)] exp.learn_from_severity_values = [10 * i for i in range(11)]
exp.epsilon = 1e-4 exp.epsilon = 1e-4
net_generators = [] net_generators = []
for activation in ['sigmoid']: #['linear', 'sigmoid', 'relu']: for activation in ['sigmoid']: #['linear', 'sigmoid', 'relu']:
for use_bias in [False]: for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)] # net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
all_names = [] all_names = []
@ -95,7 +95,10 @@ with SoupExperiment('learn-from-soup') as exp:
ys += [float(counters['fix_zero']) / float(exp.trials)] ys += [float(counters['fix_zero']) / float(exp.trials)]
zs += [float(counters['fix_other']) / float(exp.trials)] zs += [float(counters['fix_other']) / float(exp.trials)]
all_names += [name] all_names += [name]
all_data += [{'xs':xs, 'ys':ys, 'zs':zs}] #xs: learn_from_intensity according to exp.learn_from_intensity_values, ys: zero-fixpoints after life time, zs: non-zero-fixpoints after life time # xs: learn_from_intensity according to exp.learn_from_intensity_values
# ys: zero-fixpoints after life time
# zs: non-zero-fixpoints after life time
all_data += [{'xs':xs, 'ys':ys, 'zs':zs}]
exp.save(all_names=all_names) exp.save(all_names=all_names)
exp.save(all_data=all_data) exp.save(all_data=all_data)

View File

@ -1,6 +1,7 @@
import sys import sys
import os import os
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.') sys.path += os.path.join('..', '.')
from typing import Tuple from typing import Tuple
@ -13,10 +14,6 @@ from soup import *
import keras.backend import keras.backend
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
def generate_counters(): def generate_counters():
""" """
Initial build of the counter dict, to store counts. Initial build of the counter dict, to store counts.
@ -57,7 +54,7 @@ def count(counters, soup, notable_nets=[]):
with Experiment('mixed-self-fixpoints') as exp: with Experiment('mixed-self-fixpoints') as exp:
exp.trials = 10 exp.trials = 100
exp.soup_size = 10 exp.soup_size = 10
exp.soup_life = 5 exp.soup_life = 5
exp.trains_per_selfattack_values = [10 * i for i in range(11)] exp.trains_per_selfattack_values = [10 * i for i in range(11)]
@ -91,7 +88,10 @@ with Experiment('mixed-self-fixpoints') as exp:
ys += [float(counters['fix_zero']) / float(exp.trials)] ys += [float(counters['fix_zero']) / float(exp.trials)]
zs += [float(counters['fix_other']) / float(exp.trials)] zs += [float(counters['fix_other']) / float(exp.trials)]
all_names += [name] all_names += [name]
all_data += [{'xs':xs, 'ys':ys, 'zs':zs}] #xs: how many trains per self-attack from exp.trains_per_selfattack_values, ys: average amount of zero-fixpoints found, zs: average amount of non-zero fixpoints # xs: how many trains per self-attack from exp.trains_per_selfattack_values
# ys: average amount of zero-fixpoints found
# zs: average amount of non-zero fixpoints
all_data += [{'xs':xs, 'ys':ys, 'zs':zs}]
exp.save(all_names=all_names) exp.save(all_names=all_names)
exp.save(all_data=all_data) exp.save(all_data=all_data)