Refactor
This commit is contained in:
108
code/network.py
108
code/network.py
@ -1,15 +1,18 @@
|
||||
import math
|
||||
import copy
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from keras.models import Sequential, Model
|
||||
|
||||
from keras.models import Sequential
|
||||
from keras.layers import SimpleRNN, Dense
|
||||
from keras.layers import Input, TimeDistributed
|
||||
from tqdm import tqdm
|
||||
|
||||
from experiment import FixpointExperiment, IdentLearningExperiment
|
||||
|
||||
# Supress warnings and info messages
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
|
||||
|
||||
def normalize_id(value, norm):
|
||||
if norm > 1:
|
||||
@ -19,9 +22,9 @@ def normalize_id(value, norm):
|
||||
|
||||
|
||||
def are_weights_diverged(network_weights):
|
||||
for layer_id,layer in enumerate(network_weights):
|
||||
for cell_id,cell in enumerate(layer):
|
||||
for weight_id,weight in enumerate(cell):
|
||||
for layer_id, layer in enumerate(network_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
if math.isnan(weight):
|
||||
return True
|
||||
if math.isinf(weight):
|
||||
@ -30,10 +33,10 @@ def are_weights_diverged(network_weights):
|
||||
|
||||
|
||||
def are_weights_within(network_weights, lower_bound, upper_bound):
|
||||
for layer_id,layer in enumerate(network_weights):
|
||||
for cell_id,cell in enumerate(layer):
|
||||
for weight_id,weight in enumerate(cell):
|
||||
if not (lower_bound <= weight and weight <= upper_bound):
|
||||
for layer_id, layer in enumerate(network_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
if not (lower_bound <= weight <= upper_bound):
|
||||
return False
|
||||
return True
|
||||
|
||||
@ -43,10 +46,10 @@ class NeuralNetwork:
|
||||
@staticmethod
|
||||
def weights_to_string(weights):
|
||||
s = ""
|
||||
for layer_id,layer in enumerate(weights):
|
||||
for cell_id,cell in enumerate(layer):
|
||||
for layer_id, layer in enumerate(weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
s += "[ "
|
||||
for weight_id,weight in enumerate(cell):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
s += str(weight) + " "
|
||||
s += "]"
|
||||
s += "\n"
|
||||
@ -58,7 +61,6 @@ class NeuralNetwork:
|
||||
self.params.update(params)
|
||||
self.keras_params = dict(activation='linear', use_bias=False)
|
||||
self.silent = True
|
||||
self.model = None
|
||||
|
||||
def silence(self):
|
||||
self.silent = True
|
||||
@ -125,9 +127,9 @@ class NeuralNetwork:
|
||||
self.unsilence()
|
||||
if are_weights_diverged(new_weights):
|
||||
return False
|
||||
for layer_id,layer in enumerate(old_weights):
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id,weight in enumerate(cell):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
new_weight = new_weights[layer_id][cell_id][weight_id]
|
||||
if abs(new_weight - weight) >= epsilon:
|
||||
return False
|
||||
@ -151,15 +153,15 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
self.model.add(Dense(units=self.width, **self.keras_params))
|
||||
self.model.add(Dense(units=1, **self.keras_params))
|
||||
|
||||
def apply(self, *input):
|
||||
stuff = np.transpose(np.array([[input[0]], [input[1]], [input[2]], [input[3]]]))
|
||||
def apply(self, *inputs):
|
||||
stuff = np.transpose(np.array([[inputs[0]], [inputs[1]], [inputs[2]], [inputs[3]]]))
|
||||
return self.model.predict(stuff)[0][0]
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
max_layer_id = len(old_weights) - 1
|
||||
|
||||
for layer_id,layer in enumerate(old_weights):
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
max_cell_id = len(layer) - 1
|
||||
|
||||
for cell_id, cell in enumerate(layer):
|
||||
@ -174,7 +176,10 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
|
||||
if self.params.get("print_all_weight_updates", False) and not self.silent:
|
||||
print("updated old weight " + str(weight) + "\t @ (" + str(layer_id) + "," + str(cell_id) + "," + str(weight_id) + ") to new value " + str(new_weight) + "\t calling @ (" + str(normal_layer_id) + "," + str(normal_cell_id) + "," + str(normal_weight_id) + ")")
|
||||
print("updated old weight {weight}\t @ ({layer},{cell},{weight_id}) "
|
||||
"to new value {new_weight}\t calling @ ({n_layer},{n_cell},{n_weight_id})").format(
|
||||
weight=weight, layer=layer_id, cell=cell_id, weight_id=weight_id, new_weight=new_weight,
|
||||
n_layer=normal_layer_id, n_cell=normal_cell_id, n_weight_id=normal_weight_id)
|
||||
return new_weights
|
||||
|
||||
|
||||
@ -231,14 +236,14 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
|
||||
def get_amount_of_weights(self):
|
||||
total_weights = 0
|
||||
for layer_id,layer in enumerate(self.get_weights()):
|
||||
for cell_id,cell in enumerate(layer):
|
||||
for weight_id,weight in enumerate(cell):
|
||||
for layer_id, layer in enumerate(self.get_weights()):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
total_weights += 1
|
||||
return total_weights
|
||||
|
||||
def apply(self, *input):
|
||||
stuff = np.transpose(np.array([[input[i]] for i in range(self.aggregates)]))
|
||||
def apply(self, *inputs):
|
||||
stuff = np.transpose(np.array([[inputs[i]] for i in range(self.aggregates)]))
|
||||
return self.model.predict(stuff)[0]
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
@ -247,9 +252,9 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
collections = []
|
||||
next_collection = []
|
||||
current_weight_id = 0
|
||||
for layer_id,layer in enumerate(old_weights):
|
||||
for cell_id,cell in enumerate(layer):
|
||||
for weight_id,weight in enumerate(cell):
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
next_collection += [weight]
|
||||
if (current_weight_id + 1) % collection_size == 0:
|
||||
collections += [next_collection]
|
||||
@ -262,7 +267,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
new_aggregations = self.apply(*old_aggregations)
|
||||
# generate list of new weights
|
||||
new_weights_list = []
|
||||
for aggregation_id,aggregation in enumerate(new_aggregations):
|
||||
for aggregation_id, aggregation in enumerate(new_aggregations):
|
||||
if aggregation_id == self.aggregates - 1:
|
||||
new_weights_list += self.get_deaggregator()(aggregation, collection_size + leftovers)
|
||||
else:
|
||||
@ -271,9 +276,9 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
# write back new weights
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
current_weight_id = 0
|
||||
for layer_id,layer in enumerate(new_weights):
|
||||
for cell_id,cell in enumerate(layer):
|
||||
for weight_id,weight in enumerate(cell):
|
||||
for layer_id, layer in enumerate(new_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
new_weight = new_weights_list[current_weight_id]
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
current_weight_id += 1
|
||||
@ -298,25 +303,25 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
self.model.add(SimpleRNN(units=width, return_sequences=True, **self.keras_params))
|
||||
self.model.add(SimpleRNN(units=self.features, return_sequences=True, **self.keras_params))
|
||||
|
||||
def apply(self, *input):
|
||||
stuff = np.transpose(np.array([[[input[i]] for i in range(len(input))]]))
|
||||
def apply(self, *inputs):
|
||||
stuff = np.transpose(np.array([[[inputs[i]] for i in range(len(inputs))]]))
|
||||
return self.model.predict(stuff)[0].flatten()
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
# build list from old weights
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
old_weights_list = []
|
||||
for layer_id,layer in enumerate(old_weights):
|
||||
for cell_id,cell in enumerate(layer):
|
||||
for weight_id,weight in enumerate(cell):
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
old_weights_list += [weight]
|
||||
# call network
|
||||
new_weights_list = self.apply(*old_weights_list)
|
||||
# write back new weights from list of rnn returns
|
||||
current_weight_id = 0
|
||||
for layer_id,layer in enumerate(new_weights):
|
||||
for cell_id,cell in enumerate(layer):
|
||||
for weight_id,weight in enumerate(cell):
|
||||
for layer_id, layer in enumerate(new_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
new_weight = new_weights_list[current_weight_id]
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
current_weight_id += 1
|
||||
@ -329,7 +334,7 @@ class LearningNeuralNetwork(NeuralNetwork):
|
||||
def mean_reduction(weights, features):
|
||||
single_dim_weights = np.hstack([w.flatten() for w in weights])
|
||||
shaped_weights = np.reshape(single_dim_weights, (1, features, -1))
|
||||
x = np.mean(shaped_weights, axis=1)
|
||||
x = np.mean(shaped_weights, axis=-1)
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
@ -339,16 +344,15 @@ class LearningNeuralNetwork(NeuralNetwork):
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def random_reduction(weights, features):
|
||||
def random_reduction(_, features):
|
||||
x = np.random.rand(features)[None, ...]
|
||||
return x
|
||||
|
||||
def __init__(self, width, depth, features, reduction, **kwargs):
|
||||
def __init__(self, width, depth, features, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.width = width
|
||||
self.depth = depth
|
||||
self.features = features
|
||||
self.reduction = reduction
|
||||
self.compile_params = dict(loss='mse', optimizer='sgd')
|
||||
self.model.add(Dense(units=self.width, input_dim=self.features, **self.keras_params))
|
||||
for _ in range(self.depth-1):
|
||||
@ -360,13 +364,13 @@ class LearningNeuralNetwork(NeuralNetwork):
|
||||
self.compile_params.update(kwargs)
|
||||
return self
|
||||
|
||||
def learn(self, epochs, batchsize=1):
|
||||
def learn(self, epochs, reduction, batchsize=1):
|
||||
with tqdm(total=epochs, ascii=True,
|
||||
desc='Type: {t} @ Epoch:'.format(t=self.__class__.__name__),
|
||||
postfix=["Loss", dict(value=0)]) as bar:
|
||||
for epoch in range(epochs):
|
||||
old_weights = self.get_weights()
|
||||
x = self.reduction(old_weights)
|
||||
x = reduction(old_weights, self.features)
|
||||
history = self.model.fit(x=x, y=x, verbose=0, batch_size=batchsize)
|
||||
bar.postfix[1]["value"] = history.history['loss'][-1]
|
||||
bar.update()
|
||||
@ -377,8 +381,11 @@ if __name__ == '__main__':
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')
|
||||
net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random, print_all_weight_updates=False, use_bias=True)
|
||||
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear').with_params(print_all_weight_updates=True)
|
||||
net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='linear')\
|
||||
.with_params(shuffler=AggregatingNeuralNetwork.shuffle_random,
|
||||
print_all_weight_updates=False, use_bias=True)
|
||||
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')\
|
||||
# .with_params(print_all_weight_updates=True)
|
||||
|
||||
# net.print_weights()
|
||||
exp.run_net(net, 100)
|
||||
@ -386,8 +393,7 @@ if __name__ == '__main__':
|
||||
|
||||
if True:
|
||||
with IdentLearningExperiment() as exp:
|
||||
net = LearningNeuralNetwork(width=2, depth=2, features=2, reduction=LearningNeuralNetwork.random_reduction)\
|
||||
net = LearningNeuralNetwork(width=2, depth=2, features=2, )\
|
||||
.with_keras_params(activation='linear') \
|
||||
.with_params(print_all_weight_updates=False)
|
||||
net.learn(1000)
|
||||
|
||||
net.learn(1000, reduction=LearningNeuralNetwork.mean_reduction)
|
||||
|
Reference in New Issue
Block a user