sparse network redo
This commit is contained in:
12
README.md
12
README.md
@ -1,9 +1,17 @@
|
||||
# Bureaucratic Cohort Swarms
|
||||
### (The Meta-Task Experience) # Deadline: 28.02.22
|
||||
## Experimente
|
||||
### Pruning Networks by SRNN
|
||||
###### Deadline: 28.02.22
|
||||
|
||||
|
||||
Data Exchange: [Google Drive Folder](***REMOVED***)
|
||||
|
||||
Paper Template: [Overleaf Project](***REMOVED***)
|
||||
|
||||
|
||||
## Experimente
|
||||
|
||||
|
||||
|
||||
### Fixpoint Tests:
|
||||
|
||||
- [X] Dropout Test
|
||||
|
@ -1,40 +0,0 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import pandas as pd
|
||||
import re
|
||||
from pathlib import Path
|
||||
import seaborn as sns
|
||||
from matplotlib import pyplot as plt
|
||||
from network import FixTypes
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
p = Path(r'experiments\output\mn_st_200_4_alpha_100\trained_model_ckpt_e200.tp')
|
||||
m = torch.load(p, map_location=torch.device('cpu'))
|
||||
particles = [y for x in m._meta_layer_list for y in x.particles]
|
||||
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name', 'color'])
|
||||
colors = []
|
||||
|
||||
for particle in particles:
|
||||
l, c, w = [float(x) for x in re.sub("[^0-9|_]", "", particle.name).split('_')]
|
||||
|
||||
color = sns.color_palette()[0 if particle.is_fixpoint == FixTypes.identity_func else 1]
|
||||
# color = 'orange' if particle.is_fixpoint == FixTypes.identity_func else 'blue'
|
||||
colors.append(color)
|
||||
df.loc[df.shape[0]] = (particle.is_fixpoint, l-1, w, particle.name, color)
|
||||
df.loc[df.shape[0]] = (particle.is_fixpoint, l, c, particle.name, color)
|
||||
for layer in list(df['layer'].unique()):
|
||||
divisor = df.loc[(df['layer'] == layer), 'neuron'].max()
|
||||
df.loc[(df['layer'] == layer), 'neuron'] /= divisor
|
||||
|
||||
print('gathered')
|
||||
for n, (fixtype, color) in enumerate(zip([FixTypes.other_func, FixTypes.identity_func], ['blue', 'orange'])):
|
||||
plt.clf()
|
||||
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
||||
legend=False, estimator=None,
|
||||
palette=[sns.color_palette()[n]] * (df[df['type'] == fixtype].shape[0]//2), lw=1)
|
||||
# ax.set(yscale='log', ylabel='Neuron')
|
||||
ax.set_title(fixtype)
|
||||
plt.show()
|
||||
print('plottet')
|
||||
|
@ -1,4 +1,5 @@
|
||||
import pickle
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
import sys
|
||||
@ -17,7 +18,7 @@ from torchvision.datasets import MNIST
|
||||
from torchvision.transforms import ToTensor, Compose, Resize
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
# noinspection DuplicatedCode
|
||||
if platform.node() == 'CarbonX':
|
||||
debug = True
|
||||
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
|
||||
@ -37,14 +38,15 @@ else:
|
||||
DIR = None
|
||||
pass
|
||||
|
||||
from network import MetaNet, FixTypes
|
||||
from network import MetaNet, FixTypes as ft
|
||||
from sparse_net import SparseNetwork
|
||||
from functionalities_test import test_for_fixpoints
|
||||
|
||||
WORKER = 10 if not debug else 2
|
||||
debug = False
|
||||
BATCHSIZE = 500 if not debug else 50
|
||||
EPOCH = 200
|
||||
VALIDATION_FRQ = 5 if not debug else 1
|
||||
VALIDATION_FRQ = 3 if not debug else 1
|
||||
SELF_TRAIN_FRQ = 1 if not debug else 1
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
@ -139,7 +141,7 @@ def plot_training_particle_types(path_to_dataframe):
|
||||
df = pd.read_csv(path_to_dataframe, index_col=False)
|
||||
# Set up figure
|
||||
fig, ax = plt.subplots() # initializes figure and plots
|
||||
data = df[df['Metric'].isin(FixTypes.all_types())]
|
||||
data = df.loc[df['Metric'].isin(ft.all_types())]
|
||||
fix_types = data['Metric'].unique()
|
||||
data = data.pivot(index='Epoch', columns='Metric', values='Score').reset_index().fillna(0)
|
||||
_ = plt.stackplot(data['Epoch'], *[data[fixtype] for fixtype in fix_types], labels=fix_types.tolist())
|
||||
@ -189,37 +191,129 @@ def plot_training_result(path_to_dataframe):
|
||||
plt.savefig(Path(path_to_dataframe.parent / 'training_lineplot.png'), dpi=300)
|
||||
|
||||
|
||||
def plot_network_connectivity_by_fixtype(path_to_trained_model):
|
||||
m = torch.load(path_to_trained_model, map_location=torch.device('cpu'))
|
||||
# noinspection PyProtectedMember
|
||||
particles = [y for x in m._meta_layer_list for y in x.particles]
|
||||
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name'])
|
||||
|
||||
for prtcl in particles:
|
||||
l, c, w = [float(x) for x in re.sub("[^0-9|_]", "", prtcl.name).split('_')]
|
||||
df.loc[df.shape[0]] = (prtcl.is_fixpoint, l-1, w, prtcl.name)
|
||||
df.loc[df.shape[0]] = (prtcl.is_fixpoint, l, c, prtcl.name)
|
||||
for layer in list(df['layer'].unique()):
|
||||
# Rescale
|
||||
divisor = df.loc[(df['layer'] == layer), 'neuron'].max()
|
||||
df.loc[(df['layer'] == layer), 'neuron'] /= divisor
|
||||
|
||||
print('gathered')
|
||||
for n, fixtype in enumerate([ft.other_func, ft.identity_func]):
|
||||
plt.clf()
|
||||
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
||||
legend=False, estimator=None,
|
||||
palette=[sns.color_palette()[n]] * (df[df['type'] == fixtype].shape[0]//2), lw=1)
|
||||
ax.set_title(fixtype)
|
||||
plt.show()
|
||||
print('plottet')
|
||||
|
||||
|
||||
def run_particle_dropout_test(run_path):
|
||||
diff_store_path = run_path / 'diff_store.csv'
|
||||
prtcl_dict = defaultdict(lambda: 0)
|
||||
_ = test_for_fixpoints(prtcl_dict, list(latest_model.particles))
|
||||
tqdm.write(str(dict(prtcl_dict)))
|
||||
|
||||
acc_pre = validate(model_path, ratio=1).item()
|
||||
diff_df = pd.DataFrame(columns=['Particle Type', 'Accuracy', 'Diff'])
|
||||
for fixpoint_type in ft.all_types():
|
||||
new_model = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero(fixpoint_type)
|
||||
if [x for x in new_model.particles if x.is_fixpoint == fixpoint_type]:
|
||||
new_ckpt = set_checkpoint(new_model, model_path.parent, fixpoint_type, final_model=True)
|
||||
acc_post = validate(new_ckpt, ratio=1).item()
|
||||
acc_diff = abs(acc_post - acc_pre)
|
||||
tqdm.write(f'Zero_ident diff = {acc_diff}')
|
||||
diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff)
|
||||
|
||||
diff_df.to_csv(diff_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
return diff_store_path
|
||||
|
||||
|
||||
def plot_dropout_stacked_barplot(path_to_diff_df):
|
||||
diff_df = pd.read_csv(path_to_diff_df)
|
||||
particle_dict = defaultdict(lambda: 0)
|
||||
_ = test_for_fixpoints(particle_dict, list(latest_model.particles))
|
||||
tqdm.write(str(dict(particle_dict)))
|
||||
plt.clf()
|
||||
fig, ax = plt.subplots(ncols=2)
|
||||
colors = sns.color_palette()[:diff_df.shape[0]]
|
||||
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0])
|
||||
# noinspection PyUnboundLocalVariable
|
||||
for idx, patch in enumerate(barplot.patches):
|
||||
if idx != 0:
|
||||
# we recenter the bar
|
||||
patch.set_x(patch.get_x() + idx * 0.035)
|
||||
|
||||
ax[0].set_title('Accuracy after particle dropout')
|
||||
ax[0].set_xlabel('Accuracy')
|
||||
|
||||
ax[1].pie(particle_dict.values(), labels=particle_dict.keys(), colors=colors, )
|
||||
ax[1].set_title('Particle Count for ')
|
||||
|
||||
plt.tight_layout()
|
||||
if debug:
|
||||
plt.show()
|
||||
else:
|
||||
plt.savefig(Path(path_to_diff_df.parent / 'dropout_stacked_barplot.png'), dpi=300)
|
||||
|
||||
|
||||
def run_particle_dropout_and_plot(run_path):
|
||||
diff_store_path = run_particle_dropout_test(run_path)
|
||||
plot_dropout_stacked_barplot(diff_store_path)
|
||||
|
||||
|
||||
def flat_for_store(parameters):
|
||||
return (x.item() for y in parameters for x in y.detach().flatten())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
use_sparse_implementation = True
|
||||
self_train = True
|
||||
training = False
|
||||
plotting = True
|
||||
particle_analysis = True
|
||||
as_sparse_network_test = True
|
||||
training = True
|
||||
train_to_id_first = False
|
||||
self_train_alpha = 100
|
||||
train_to_task_first = False
|
||||
train_to_task_first_sequential = True
|
||||
|
||||
tsk_threshold = 0.855
|
||||
self_train_alpha = 1
|
||||
batch_train_beta = 1
|
||||
weight_hidden_size = 4
|
||||
weight_hidden_size = 3
|
||||
residual_skip = True
|
||||
dropout = 0
|
||||
n_seeds = 2
|
||||
|
||||
data_path = Path('data')
|
||||
data_path.mkdir(exist_ok=True, parents=True)
|
||||
assert not (train_to_task_first and train_to_id_first)
|
||||
|
||||
st_str = f'{"" if self_train else "no_"}st'
|
||||
a_str = f'_alpha_{self_train_alpha}' if self_train_alpha != 1 else ''
|
||||
res_str = f'{"" if residual_skip else "_no"}_res'
|
||||
dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||
res_str = f'{"" if residual_skip else "_no_res"}'
|
||||
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
||||
run_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{a_str}{res_str}{dr_str}{id_str}'
|
||||
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first else ""}'
|
||||
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{a_str}{res_str}{id_str}{tsk_str}'
|
||||
|
||||
model_path = run_path / '0000_trained_model.zip'
|
||||
df_store_path = run_path / 'train_store.csv'
|
||||
weight_store_path = run_path / 'weight_store.csv'
|
||||
if use_sparse_implementation:
|
||||
metanet_class = SparseNetwork
|
||||
else:
|
||||
metanet_class = MetaNet
|
||||
|
||||
for seed in range(n_seeds):
|
||||
seed_path = exp_path / str(seed)
|
||||
|
||||
model_path = seed_path / '0000_trained_model.zip'
|
||||
df_store_path = seed_path / 'train_store.csv'
|
||||
weight_store_path = seed_path / 'weight_store.csv'
|
||||
srnn_parameters = dict()
|
||||
|
||||
if training:
|
||||
@ -231,9 +325,8 @@ if __name__ == '__main__':
|
||||
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||
|
||||
interface = np.prod(dataset[0][0].shape)
|
||||
metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip, dropout=dropout,
|
||||
weight_hidden_size=weight_hidden_size,
|
||||
).to(DEVICE)
|
||||
metanet = metanet_class(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
|
||||
weight_hidden_size=weight_hidden_size,).to(DEVICE)
|
||||
meta_weight_count = sum(p.numel() for p in next(metanet.particles).parameters())
|
||||
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
@ -241,6 +334,7 @@ if __name__ == '__main__':
|
||||
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', meta_weight_count)
|
||||
init_tsk = train_to_task_first
|
||||
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
||||
@ -249,24 +343,25 @@ if __name__ == '__main__':
|
||||
metric = torchmetrics.Accuracy()
|
||||
else:
|
||||
metric = None
|
||||
init_st = train_to_id_first and all(x.is_fixpoint == FixTypes.identity_func for x in metanet.particles)
|
||||
init_st = train_to_id_first and not all(x.is_fixpoint == ft.identity_func for x in metanet.particles)
|
||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
||||
if (self_train and is_self_train_epoch) or init_st:
|
||||
if self_train and not init_tsk and (is_self_train_epoch or init_st):
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
self_train_loss = metanet.combined_self_train() * self_train_alpha
|
||||
self_train_loss.backward()
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
step_log = dict(Epoch=epoch, Batch=batch, Metric='Self Train Loss', Score=self_train_loss.item())
|
||||
step_log = dict(Epoch=epoch, Batch=batch,
|
||||
Metric='Self Train Loss', Score=self_train_loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if train_to_id_first <= epoch:
|
||||
if not init_st:
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||
y = metanet(batch_x)
|
||||
y_pred = metanet(batch_x)
|
||||
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
||||
loss = loss_fn(y, batch_y.to(torch.long)) * batch_train_beta
|
||||
loss = loss_fn(y_pred, batch_y.to(torch.long)) * batch_train_beta
|
||||
loss.backward()
|
||||
|
||||
# Adjust learning weights
|
||||
@ -276,7 +371,7 @@ if __name__ == '__main__':
|
||||
Metric='Task Loss', Score=loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if is_validation_epoch:
|
||||
metric(y.cpu(), batch_y.cpu())
|
||||
metric(y_pred.cpu(), batch_y.cpu())
|
||||
|
||||
if batch >= 3 and debug:
|
||||
break
|
||||
@ -288,11 +383,13 @@ if __name__ == '__main__':
|
||||
Metric='Train Accuracy', Score=metric.compute().item())
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
|
||||
accuracy = checkpoint_and_validate(metanet, run_path, epoch)
|
||||
accuracy = checkpoint_and_validate(metanet, seed_path, epoch).item()
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy.item())
|
||||
Metric='Test Accuracy', Score=accuracy)
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
if particle_analysis and (init_st or is_validation_epoch):
|
||||
if init_tsk or (train_to_task_first and train_to_task_first_sequential):
|
||||
init_tsk = accuracy <= tsk_threshold
|
||||
if init_st or is_validation_epoch:
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||
@ -309,14 +406,14 @@ if __name__ == '__main__':
|
||||
weight_store = new_storage_df('weights', meta_weight_count)
|
||||
|
||||
metanet.eval()
|
||||
if particle_analysis:
|
||||
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||
for key, value in dict(counter_dict).items():
|
||||
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True)
|
||||
accuracy = checkpoint_and_validate(metanet, seed_path, EPOCH, final_model=True)
|
||||
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy.item())
|
||||
for particle in metanet.particles:
|
||||
@ -327,58 +424,20 @@ if __name__ == '__main__':
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||
|
||||
if plotting:
|
||||
plot_training_result(df_store_path)
|
||||
if particle_analysis:
|
||||
plot_training_particle_types(df_store_path)
|
||||
|
||||
if particle_analysis:
|
||||
try:
|
||||
model_path = next(run_path.glob(f'*e{EPOCH}.tp'))
|
||||
model_path = next(seed_path.glob(f'*e{EPOCH}.tp'))
|
||||
except StopIteration:
|
||||
print('Model pattern did not trigger.')
|
||||
print(f'Search path was: {run_path}:')
|
||||
print(f'Found Models are: {list(run_path.rglob(".tp"))}')
|
||||
print(f'Search path was: {seed_path}:')
|
||||
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
|
||||
exit(1)
|
||||
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
_ = test_for_fixpoints(counter_dict, list(latest_model.particles))
|
||||
tqdm.write(str(dict(counter_dict)))
|
||||
|
||||
if as_sparse_network_test:
|
||||
acc_pre = validate(model_path, ratio=1).item()
|
||||
diff_df = pd.DataFrame(columns=['Particle Type', 'Accuracy', 'Diff'])
|
||||
for fixpoint_type in FixTypes.all_types():
|
||||
new_model = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero(fixpoint_type)
|
||||
if [x for x in new_model.particles if x.is_fixpoint == fixpoint_type]:
|
||||
new_ckpt = set_checkpoint(new_model, model_path.parent, fixpoint_type, final_model=True)
|
||||
acc_post = validate(new_ckpt, ratio=1).item()
|
||||
acc_diff = abs(acc_post-acc_pre)
|
||||
tqdm.write(f'Zero_ident diff = {acc_diff}')
|
||||
diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff)
|
||||
run_particle_dropout_and_plot(seed_path)
|
||||
plot_network_connectivity_by_fixtype(model_path)
|
||||
|
||||
if plotting:
|
||||
plt.clf()
|
||||
fig, ax = plt.subplots(ncols=2)
|
||||
labels = ['Full Network', 'Sparse, No Identity', 'Sparse, No Other']
|
||||
colors = sns.color_palette()[:diff_df.shape[0]] if diff_df.shape[0] >= 2 else sns.color_palette()[0]
|
||||
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0])
|
||||
# noinspection PyUnboundLocalVariable
|
||||
for idx, patch in enumerate(barplot.patches):
|
||||
if idx != 0:
|
||||
# we recenter the bar
|
||||
patch.set_x(patch.get_x() + idx * 0.035)
|
||||
|
||||
ax[0].set_title('Accuracy after particle dropout')
|
||||
ax[0].set_xlabel('Accuracy')
|
||||
# ax[0].legend()
|
||||
|
||||
ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=colors, )
|
||||
ax[1].set_title('Particle Count for ')
|
||||
# ax[1].set_xlabel('')
|
||||
|
||||
plt.tight_layout()
|
||||
if debug:
|
||||
plt.show()
|
||||
else:
|
||||
plt.savefig(Path(run_path / 'dropout_stacked_barplot.png'), dpi=300)
|
||||
if n_seeds >= 2:
|
||||
pass
|
||||
|
13
network.py
13
network.py
@ -68,7 +68,6 @@ class Net(nn.Module):
|
||||
for weight_id, weight_value in enumerate(self.state_dict()[layer_name][line_id]):
|
||||
self.state_dict()[layer_name][line_id][weight_id] = new_weights[i]
|
||||
i += 1
|
||||
|
||||
return self
|
||||
|
||||
def __init__(self, i_size: int, h_size: int, o_size: int, name=None, start_time=1) -> None:
|
||||
@ -100,7 +99,6 @@ class Net(nn.Module):
|
||||
|
||||
self._weight_pos_enc_and_mask = None
|
||||
|
||||
|
||||
@property
|
||||
def _weight_pos_enc(self):
|
||||
if self._weight_pos_enc_and_mask is None:
|
||||
@ -127,8 +125,8 @@ class Net(nn.Module):
|
||||
|
||||
# Normalize 1,2,3 column of dim 1
|
||||
last_pos_idx = self.input_size - 4
|
||||
norm2 = weight_matrix[:, 1:-last_pos_idx].pow(2).sum(keepdim=True, dim=0).sqrt()
|
||||
weight_matrix[:, 1:-last_pos_idx] = (weight_matrix[:, 1:-last_pos_idx] / norm2) + 1e-8
|
||||
max_per_col, _ = weight_matrix[:, 1:-last_pos_idx].max(keepdim=True, dim=0)
|
||||
weight_matrix[:, 1:-last_pos_idx] = (weight_matrix[:, 1:-last_pos_idx] / max_per_col) + 1e-8
|
||||
|
||||
# computations
|
||||
# create a mask where pos is 0 if it is to be replaced
|
||||
@ -389,6 +387,7 @@ class MetaNet(nn.Module):
|
||||
def __init__(self, interface=4, depth=3, width=4, out=1, activation=None, residual_skip=True, dropout=0,
|
||||
weight_interface=5, weight_hidden_size=2, weight_output_size=1,):
|
||||
super().__init__()
|
||||
self.residual_skip = residual_skip
|
||||
self.dropout = dropout
|
||||
self.activation = activation
|
||||
self.out = out
|
||||
@ -398,7 +397,6 @@ class MetaNet(nn.Module):
|
||||
self.weight_interface = weight_interface
|
||||
self.weight_hidden_size = weight_hidden_size
|
||||
self.weight_output_size = weight_output_size
|
||||
|
||||
self._meta_layer_first = MetaLayer(name=f'L{0}',
|
||||
interface=self.interface,
|
||||
width=self.width,
|
||||
@ -411,6 +409,7 @@ class MetaNet(nn.Module):
|
||||
weight_interface=weight_interface,
|
||||
weight_hidden_size=weight_hidden_size,
|
||||
weight_output_size=weight_output_size,
|
||||
|
||||
) for layer_idx in range(self.depth - 2)]
|
||||
)
|
||||
self._meta_layer_last = MetaLayer(name=f'L{len(self._meta_layer_list)}',
|
||||
@ -441,10 +440,10 @@ class MetaNet(nn.Module):
|
||||
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
|
||||
if self.dropout != 0:
|
||||
tensor = self.dropout_layer(tensor)
|
||||
if idx % 2 == 1:
|
||||
if idx % 2 == 1 and self.residual_skip:
|
||||
x = tensor.clone()
|
||||
tensor = meta_layer(tensor)
|
||||
if idx % 2 == 0:
|
||||
if idx % 2 == 0 and self.residual_skip:
|
||||
tensor = tensor + x
|
||||
if self.dropout != 0:
|
||||
x = self.dropout_layer(x)
|
||||
|
@ -56,7 +56,7 @@ if __name__ == '__main__':
|
||||
d_test = DataLoader(mnist_test, batch_size=BATCHSIZE, shuffle=False, drop_last=True, num_workers=WORKER)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
model = torch.load("trained_model_ckpt_e200.tp", map_location=DEVICE).eval()
|
||||
model = torch.load("mn_st_40_6_res_Tsk_0.85", map_location=DEVICE).eval()
|
||||
weights = extract_weights_from_model(model)
|
||||
test_weights_as_model(weights, d_test)
|
||||
|
||||
|
187
sparse_net.py
187
sparse_net.py
@ -1,18 +1,22 @@
|
||||
from torch import nn
|
||||
|
||||
from network import Net
|
||||
from typing import List
|
||||
from functionalities_test import is_identity_function
|
||||
from tqdm import tqdm,trange
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import torch
|
||||
from torch.nn import Flatten
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torch.utils.data import DataLoader
|
||||
import torch.nn.functional as F
|
||||
from torchvision.datasets import MNIST
|
||||
from torchvision.transforms import ToTensor, Compose, Resize
|
||||
|
||||
|
||||
class SparseLayer():
|
||||
class SparseLayer(nn.Module):
|
||||
def __init__(self, nr_nets, interface=5, depth=3, width=2, out=1):
|
||||
super(SparseLayer, self).__init__()
|
||||
|
||||
self.nr_nets = nr_nets
|
||||
self.interface_dim = interface
|
||||
self.depth_dim = depth
|
||||
@ -20,54 +24,79 @@ class SparseLayer():
|
||||
self.out_dim = out
|
||||
self.dummy_net = Net(self.interface_dim, self.hidden_dim, self.out_dim)
|
||||
|
||||
self.sparse_sub_layer = []
|
||||
self.weights = []
|
||||
for layer_id in range(depth):
|
||||
layer, weights = self.coo_sparse_layer(layer_id)
|
||||
self.sparse_sub_layer.append(layer)
|
||||
self.sparse_sub_layer = list()
|
||||
self.indices = list()
|
||||
self.diag_shapes = list()
|
||||
self.weights = nn.ParameterList()
|
||||
self._particles = None
|
||||
|
||||
for layer_id in range(self.depth_dim):
|
||||
indices, weights, diag_shape = self.coo_sparse_layer(layer_id)
|
||||
self.indices.append(indices)
|
||||
self.diag_shapes.append(diag_shape)
|
||||
self.weights.append(weights)
|
||||
|
||||
def coo_sparse_layer(self, layer_id):
|
||||
layer_shape = list(self.dummy_net.parameters())[layer_id].shape
|
||||
#print(layer_shape) #(out_cells, in_cells) -> (2,5), (2,2), (1,2)
|
||||
|
||||
sparse_diagonal = np.eye(self.nr_nets).repeat(layer_shape[0], axis=-2).repeat(layer_shape[1], axis=-1)
|
||||
indices = np.argwhere(sparse_diagonal == 1).T
|
||||
values = torch.nn.Parameter(torch.randn((self.nr_nets * (layer_shape[0]*layer_shape[1]) )))
|
||||
#values = torch.randn((self.nr_nets * layer_shape[0]*layer_shape[1] ))
|
||||
s = torch.sparse_coo_tensor(indices, values, sparse_diagonal.shape, requires_grad=True)
|
||||
print(f"L{layer_id}:", s.shape)
|
||||
return s, values
|
||||
indices = torch.Tensor(np.argwhere(sparse_diagonal == 1).T)
|
||||
values = torch.nn.Parameter(
|
||||
torch.randn((self.nr_nets * (layer_shape[0]*layer_shape[1]))), requires_grad=True
|
||||
)
|
||||
|
||||
return indices, values, sparse_diagonal.shape
|
||||
|
||||
def get_self_train_inputs_and_targets(self):
|
||||
encoding_matrix, mask = self.dummy_net._weight_pos_enc
|
||||
|
||||
# view weights of each sublayer in equal chunks, each column representing weights of one selfrepNN
|
||||
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2 and first hidden*out weights of layer3 = first net
|
||||
weights = [layer.view(-1, int(len(layer)/self.nr_nets)) for layer in self.weights] #[nr_layers*[nr_net*nr_weights_layer_i]]
|
||||
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1,1) for i in range(self.nr_nets)] #[nr_net*[nr_weights]]
|
||||
inputs = torch.hstack([encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask) for i in range(self.nr_nets)]) #(16, 25)
|
||||
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2
|
||||
# and first hidden*out weights of layer3 = first net
|
||||
# [nr_layers*[nr_net*nr_weights_layer_i]]
|
||||
weights = [layer.view(-1, int(len(layer)/self.nr_nets)) for layer in self.weights]
|
||||
# [nr_net*[nr_weights]]
|
||||
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1, 1) for i in range(self.nr_nets)]
|
||||
# (16, 25)
|
||||
inputs = torch.hstack(
|
||||
[encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask)
|
||||
for i in range(self.nr_nets)]
|
||||
)
|
||||
targets = torch.hstack(weights_per_net)
|
||||
return inputs.T, targets.T
|
||||
return inputs.T.detach(), targets.T.detach()
|
||||
|
||||
@property
|
||||
def particles(self):
|
||||
if self._particles is None:
|
||||
self._particles = [Net(self.interface_dim, self.hidden_dim, self.out_dim) for _ in range(self.nr_nets)]
|
||||
pass
|
||||
else:
|
||||
pass
|
||||
|
||||
# Particle Weight Update
|
||||
all_weights = [layer.view(-1, int(len(layer) / self.nr_nets)) for layer in self.weights]
|
||||
weights_per_net = [torch.cat([layer[i] for layer in all_weights]).view(-1, 1) for i in
|
||||
range(self.nr_nets)] # [nr_net*[nr_weights]]
|
||||
for particles, weights in zip(self._particles, weights_per_net):
|
||||
particles.apply_weights(weights)
|
||||
return self._particles
|
||||
|
||||
def __call__(self, x):
|
||||
X1 = torch.sparse.mm(self.sparse_sub_layer[0], x)
|
||||
#print("X1", X1.shape)
|
||||
for indices, diag_shapes, weights in zip(self.indices, self.diag_shapes, self.weights):
|
||||
s = torch.sparse_coo_tensor(indices, weights, diag_shapes, requires_grad=True, device=x.device)
|
||||
x = torch.sparse.mm(s, x)
|
||||
return x
|
||||
|
||||
X2 = torch.sparse.mm(self.sparse_sub_layer[1], X1)
|
||||
#print("X2", X2.shape)
|
||||
|
||||
X3 = torch.sparse.mm(self.sparse_sub_layer[2], X2)
|
||||
#print("X3", X3.shape)
|
||||
|
||||
return X3
|
||||
def to(self, *args, **kwargs):
|
||||
super(SparseLayer, self).to(*args, **kwargs)
|
||||
self.sparse_sub_layer = [sparse_sub_layer.to(*args, **kwargs) for sparse_sub_layer in self.sparse_sub_layer]
|
||||
return self
|
||||
|
||||
|
||||
def test_sparse_layer():
|
||||
net = SparseLayer(500) #50 parallel nets
|
||||
loss_fn = torch.nn.MSELoss(reduction="sum")
|
||||
optimizer = torch.optim.SGD([weight for weight in net.weights], lr=0.004, momentum=0.9)
|
||||
#optimizer = torch.optim.SGD([layer for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
||||
optimizer = torch.optim.SGD(net.weights, lr=0.004, momentum=0.9)
|
||||
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
||||
|
||||
for train_iteration in trange(1000):
|
||||
optimizer.zero_grad()
|
||||
@ -88,54 +117,95 @@ def test_sparse_layer():
|
||||
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def embed_batch(x, repeat_dim):
|
||||
# x of shape (batchsize, flat_img_dim)
|
||||
x = x.unsqueeze(-1) #(batchsize, flat_img_dim, 1)
|
||||
return torch.cat( (torch.zeros( x.shape[0], x.shape[1], 4), x), dim=2).repeat(1,1,repeat_dim) #(batchsize, flat_img_dim, encoding_dim*repeat_dim)
|
||||
return torch.cat((torch.zeros(x.shape[0], x.shape[1], 4, device=x.device), x), dim=2).repeat(1, 1, repeat_dim) #(batchsize, flat_img_dim, encoding_dim*repeat_dim)
|
||||
|
||||
|
||||
def embed_vector(x, repeat_dim):
|
||||
# x of shape [flat_img_dim]
|
||||
x = x.unsqueeze(-1) # (flat_img_dim, 1)
|
||||
return torch.cat( (torch.zeros( x.shape[0], 4), x), dim=1).repeat(1,repeat_dim) #(flat_img_dim, encoding_dim*repeat_dim)
|
||||
# (flat_img_dim, encoding_dim*repeat_dim)
|
||||
return torch.cat((torch.zeros(x.shape[0], 4), x), dim=1).repeat(1,repeat_dim)
|
||||
|
||||
class SparseNetwork():
|
||||
def __init__(self, input_dim, depth, width, out):
|
||||
|
||||
class SparseNetwork(nn.Module):
|
||||
def __init__(self, input_dim, depth, width, out, residual_skip=True,
|
||||
weight_interface=5, weight_hidden_size=2, weight_output_size=1
|
||||
):
|
||||
super(SparseNetwork, self).__init__()
|
||||
self.residual_skip = residual_skip
|
||||
self.input_dim = input_dim
|
||||
self.depth_dim = depth
|
||||
self.hidden_dim = width
|
||||
self.out_dim = out
|
||||
self.sparse_layers = []
|
||||
self.sparse_layers.append( SparseLayer( self.input_dim * self.hidden_dim ))
|
||||
self.sparse_layers.extend([ SparseLayer( self.hidden_dim * self.hidden_dim ) for layer_idx in range(self.depth_dim - 2)])
|
||||
self.sparse_layers.append( SparseLayer( self.hidden_dim * self.out_dim ))
|
||||
self.first_layer = SparseLayer(self.input_dim * self.hidden_dim,
|
||||
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
|
||||
self.last_layer = SparseLayer(self.hidden_dim * self.out_dim,
|
||||
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
|
||||
self.hidden_layers = nn.ModuleList([
|
||||
SparseLayer(self.hidden_dim * self.hidden_dim,
|
||||
interface=weight_interface, width=weight_hidden_size, out=weight_output_size
|
||||
) for _ in range(self.depth_dim - 2)])
|
||||
|
||||
def __call__(self, x):
|
||||
|
||||
for sparse_layer in self.sparse_layers[:-1]:
|
||||
tensor = self.sparse_layer_forward(x, self.first_layer)
|
||||
for nl_idx, network_layer in enumerate(self.hidden_layers):
|
||||
if nl_idx % 2 == 0 and self.residual_skip:
|
||||
residual = tensor.clone()
|
||||
# Sparse Layer pass
|
||||
tensor = self.sparse_layer_forward(tensor, network_layer)
|
||||
|
||||
if nl_idx % 2 != 0 and self.residual_skip:
|
||||
# noinspection PyUnboundLocalVariable
|
||||
tensor += residual
|
||||
tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim)
|
||||
return tensor
|
||||
|
||||
def sparse_layer_forward(self, x, sparse_layer, view_dim=None):
|
||||
view_dim = view_dim if view_dim else self.hidden_dim
|
||||
# batch pass (one by one, sparse bmm doesn't support grad)
|
||||
if len(x.shape) > 1:
|
||||
embedded_inpt = embed_batch(x, sparse_layer.nr_nets)
|
||||
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(self.hidden_dim, x.shape[1]).sum(dim=1) for inpt in embedded_inpt]) #[batchsize, hidden*inpt_dim, feature_dim]
|
||||
# [batchsize, hidden*inpt_dim, feature_dim]
|
||||
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(view_dim, x.shape[1]).sum(dim=1) for inpt in
|
||||
embedded_inpt])
|
||||
# vector
|
||||
else:
|
||||
embedded_inpt = embed_vector(x, sparse_layer.nr_nets)
|
||||
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(self.hidden_dim, x.shape[1]).sum(dim=1)
|
||||
print("out", x.shape)
|
||||
|
||||
# output layer
|
||||
sparse_layer = self.sparse_layers[-1]
|
||||
if len(x.shape) > 1:
|
||||
embedded_inpt = embed_batch(x, sparse_layer.nr_nets)
|
||||
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(self.out_dim, x.shape[1]).sum(dim=1) for inpt in embedded_inpt]) #[batchsize, hidden*inpt_dim, feature_dim]
|
||||
else:
|
||||
embedded_inpt = embed_vector(x, sparse_layer.nr_nets)
|
||||
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(self.out_dim, x.shape[1]).sum(dim=1)
|
||||
print("out", x.shape)
|
||||
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(view_dim, x.shape[1]).sum(dim=1)
|
||||
return x
|
||||
|
||||
@property
|
||||
def particles(self):
|
||||
particles = []
|
||||
particles.extend(self.first_layer.particles)
|
||||
for layer in self.hidden_layers:
|
||||
particles.extend(layer.particles)
|
||||
particles.extend(self.last_layer.particles)
|
||||
return iter(particles)
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
super(SparseNetwork, self).to(*args, **kwargs)
|
||||
self.first_layer = self.first_layer.to(*args, **kwargs)
|
||||
self.last_layer = self.last_layer.to(*args, **kwargs)
|
||||
self.hidden_layers = nn.ModuleList([hidden_layer.to(*args, **kwargs) for hidden_layer in self.hidden_layers])
|
||||
return self
|
||||
|
||||
def combined_self_train(self):
|
||||
import time
|
||||
t = time.time()
|
||||
losses = []
|
||||
for layer in [self.first_layer, *self.hidden_layers, self.last_layer]:
|
||||
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||
output = layer(x)
|
||||
|
||||
losses.append(F.mse_loss(output, target_data))
|
||||
print('Time Taken:', time.time() - t)
|
||||
return torch.hstack(losses).sum(dim=-1, keepdim=True)
|
||||
|
||||
|
||||
def test_sparse_net():
|
||||
utility_transforms = Compose([ Resize((10, 10)), ToTensor(), Flatten(start_dim=0)])
|
||||
@ -150,7 +220,6 @@ def test_sparse_net():
|
||||
data_dim = np.prod(dataset[0][0].shape)
|
||||
metanet = SparseNetwork(data_dim, depth=3, width=5, out=10)
|
||||
batchx, batchy = next(iter(d))
|
||||
batchx.shape, batchy.shape
|
||||
metanet(batchx)
|
||||
|
||||
|
||||
@ -176,6 +245,6 @@ def test_manual_for_loop():
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sparse_layer()
|
||||
test_sparse_net()
|
||||
# test_sparse_net()
|
||||
# for comparison
|
||||
test_manual_for_loop()
|
Reference in New Issue
Block a user