sparse network redo
This commit is contained in:
12
README.md
12
README.md
@ -1,9 +1,17 @@
|
|||||||
# Bureaucratic Cohort Swarms
|
# Bureaucratic Cohort Swarms
|
||||||
### (The Meta-Task Experience) # Deadline: 28.02.22
|
### Pruning Networks by SRNN
|
||||||
## Experimente
|
###### Deadline: 28.02.22
|
||||||
|
|
||||||
|
|
||||||
Data Exchange: [Google Drive Folder](***REMOVED***)
|
Data Exchange: [Google Drive Folder](***REMOVED***)
|
||||||
|
|
||||||
|
Paper Template: [Overleaf Project](***REMOVED***)
|
||||||
|
|
||||||
|
|
||||||
|
## Experimente
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Fixpoint Tests:
|
### Fixpoint Tests:
|
||||||
|
|
||||||
- [X] Dropout Test
|
- [X] Dropout Test
|
||||||
|
@ -1,40 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
import pandas as pd
|
|
||||||
import re
|
|
||||||
from pathlib import Path
|
|
||||||
import seaborn as sns
|
|
||||||
from matplotlib import pyplot as plt
|
|
||||||
from network import FixTypes
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
p = Path(r'experiments\output\mn_st_200_4_alpha_100\trained_model_ckpt_e200.tp')
|
|
||||||
m = torch.load(p, map_location=torch.device('cpu'))
|
|
||||||
particles = [y for x in m._meta_layer_list for y in x.particles]
|
|
||||||
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name', 'color'])
|
|
||||||
colors = []
|
|
||||||
|
|
||||||
for particle in particles:
|
|
||||||
l, c, w = [float(x) for x in re.sub("[^0-9|_]", "", particle.name).split('_')]
|
|
||||||
|
|
||||||
color = sns.color_palette()[0 if particle.is_fixpoint == FixTypes.identity_func else 1]
|
|
||||||
# color = 'orange' if particle.is_fixpoint == FixTypes.identity_func else 'blue'
|
|
||||||
colors.append(color)
|
|
||||||
df.loc[df.shape[0]] = (particle.is_fixpoint, l-1, w, particle.name, color)
|
|
||||||
df.loc[df.shape[0]] = (particle.is_fixpoint, l, c, particle.name, color)
|
|
||||||
for layer in list(df['layer'].unique()):
|
|
||||||
divisor = df.loc[(df['layer'] == layer), 'neuron'].max()
|
|
||||||
df.loc[(df['layer'] == layer), 'neuron'] /= divisor
|
|
||||||
|
|
||||||
print('gathered')
|
|
||||||
for n, (fixtype, color) in enumerate(zip([FixTypes.other_func, FixTypes.identity_func], ['blue', 'orange'])):
|
|
||||||
plt.clf()
|
|
||||||
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
|
||||||
legend=False, estimator=None,
|
|
||||||
palette=[sns.color_palette()[n]] * (df[df['type'] == fixtype].shape[0]//2), lw=1)
|
|
||||||
# ax.set(yscale='log', ylabel='Neuron')
|
|
||||||
ax.set_title(fixtype)
|
|
||||||
plt.show()
|
|
||||||
print('plottet')
|
|
||||||
|
|
@ -1,4 +1,5 @@
|
|||||||
import pickle
|
import pickle
|
||||||
|
import re
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import sys
|
import sys
|
||||||
@ -17,7 +18,7 @@ from torchvision.datasets import MNIST
|
|||||||
from torchvision.transforms import ToTensor, Compose, Resize
|
from torchvision.transforms import ToTensor, Compose, Resize
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
# noinspection DuplicatedCode
|
||||||
if platform.node() == 'CarbonX':
|
if platform.node() == 'CarbonX':
|
||||||
debug = True
|
debug = True
|
||||||
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
|
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
|
||||||
@ -37,14 +38,15 @@ else:
|
|||||||
DIR = None
|
DIR = None
|
||||||
pass
|
pass
|
||||||
|
|
||||||
from network import MetaNet, FixTypes
|
from network import MetaNet, FixTypes as ft
|
||||||
|
from sparse_net import SparseNetwork
|
||||||
from functionalities_test import test_for_fixpoints
|
from functionalities_test import test_for_fixpoints
|
||||||
|
|
||||||
WORKER = 10 if not debug else 2
|
WORKER = 10 if not debug else 2
|
||||||
debug = False
|
debug = False
|
||||||
BATCHSIZE = 500 if not debug else 50
|
BATCHSIZE = 500 if not debug else 50
|
||||||
EPOCH = 200
|
EPOCH = 200
|
||||||
VALIDATION_FRQ = 5 if not debug else 1
|
VALIDATION_FRQ = 3 if not debug else 1
|
||||||
SELF_TRAIN_FRQ = 1 if not debug else 1
|
SELF_TRAIN_FRQ = 1 if not debug else 1
|
||||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
|
||||||
@ -139,7 +141,7 @@ def plot_training_particle_types(path_to_dataframe):
|
|||||||
df = pd.read_csv(path_to_dataframe, index_col=False)
|
df = pd.read_csv(path_to_dataframe, index_col=False)
|
||||||
# Set up figure
|
# Set up figure
|
||||||
fig, ax = plt.subplots() # initializes figure and plots
|
fig, ax = plt.subplots() # initializes figure and plots
|
||||||
data = df[df['Metric'].isin(FixTypes.all_types())]
|
data = df.loc[df['Metric'].isin(ft.all_types())]
|
||||||
fix_types = data['Metric'].unique()
|
fix_types = data['Metric'].unique()
|
||||||
data = data.pivot(index='Epoch', columns='Metric', values='Score').reset_index().fillna(0)
|
data = data.pivot(index='Epoch', columns='Metric', values='Score').reset_index().fillna(0)
|
||||||
_ = plt.stackplot(data['Epoch'], *[data[fixtype] for fixtype in fix_types], labels=fix_types.tolist())
|
_ = plt.stackplot(data['Epoch'], *[data[fixtype] for fixtype in fix_types], labels=fix_types.tolist())
|
||||||
@ -189,196 +191,253 @@ def plot_training_result(path_to_dataframe):
|
|||||||
plt.savefig(Path(path_to_dataframe.parent / 'training_lineplot.png'), dpi=300)
|
plt.savefig(Path(path_to_dataframe.parent / 'training_lineplot.png'), dpi=300)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_network_connectivity_by_fixtype(path_to_trained_model):
|
||||||
|
m = torch.load(path_to_trained_model, map_location=torch.device('cpu'))
|
||||||
|
# noinspection PyProtectedMember
|
||||||
|
particles = [y for x in m._meta_layer_list for y in x.particles]
|
||||||
|
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name'])
|
||||||
|
|
||||||
|
for prtcl in particles:
|
||||||
|
l, c, w = [float(x) for x in re.sub("[^0-9|_]", "", prtcl.name).split('_')]
|
||||||
|
df.loc[df.shape[0]] = (prtcl.is_fixpoint, l-1, w, prtcl.name)
|
||||||
|
df.loc[df.shape[0]] = (prtcl.is_fixpoint, l, c, prtcl.name)
|
||||||
|
for layer in list(df['layer'].unique()):
|
||||||
|
# Rescale
|
||||||
|
divisor = df.loc[(df['layer'] == layer), 'neuron'].max()
|
||||||
|
df.loc[(df['layer'] == layer), 'neuron'] /= divisor
|
||||||
|
|
||||||
|
print('gathered')
|
||||||
|
for n, fixtype in enumerate([ft.other_func, ft.identity_func]):
|
||||||
|
plt.clf()
|
||||||
|
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
||||||
|
legend=False, estimator=None,
|
||||||
|
palette=[sns.color_palette()[n]] * (df[df['type'] == fixtype].shape[0]//2), lw=1)
|
||||||
|
ax.set_title(fixtype)
|
||||||
|
plt.show()
|
||||||
|
print('plottet')
|
||||||
|
|
||||||
|
|
||||||
|
def run_particle_dropout_test(run_path):
|
||||||
|
diff_store_path = run_path / 'diff_store.csv'
|
||||||
|
prtcl_dict = defaultdict(lambda: 0)
|
||||||
|
_ = test_for_fixpoints(prtcl_dict, list(latest_model.particles))
|
||||||
|
tqdm.write(str(dict(prtcl_dict)))
|
||||||
|
|
||||||
|
acc_pre = validate(model_path, ratio=1).item()
|
||||||
|
diff_df = pd.DataFrame(columns=['Particle Type', 'Accuracy', 'Diff'])
|
||||||
|
for fixpoint_type in ft.all_types():
|
||||||
|
new_model = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero(fixpoint_type)
|
||||||
|
if [x for x in new_model.particles if x.is_fixpoint == fixpoint_type]:
|
||||||
|
new_ckpt = set_checkpoint(new_model, model_path.parent, fixpoint_type, final_model=True)
|
||||||
|
acc_post = validate(new_ckpt, ratio=1).item()
|
||||||
|
acc_diff = abs(acc_post - acc_pre)
|
||||||
|
tqdm.write(f'Zero_ident diff = {acc_diff}')
|
||||||
|
diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff)
|
||||||
|
|
||||||
|
diff_df.to_csv(diff_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||||
|
return diff_store_path
|
||||||
|
|
||||||
|
|
||||||
|
def plot_dropout_stacked_barplot(path_to_diff_df):
|
||||||
|
diff_df = pd.read_csv(path_to_diff_df)
|
||||||
|
particle_dict = defaultdict(lambda: 0)
|
||||||
|
_ = test_for_fixpoints(particle_dict, list(latest_model.particles))
|
||||||
|
tqdm.write(str(dict(particle_dict)))
|
||||||
|
plt.clf()
|
||||||
|
fig, ax = plt.subplots(ncols=2)
|
||||||
|
colors = sns.color_palette()[:diff_df.shape[0]]
|
||||||
|
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0])
|
||||||
|
# noinspection PyUnboundLocalVariable
|
||||||
|
for idx, patch in enumerate(barplot.patches):
|
||||||
|
if idx != 0:
|
||||||
|
# we recenter the bar
|
||||||
|
patch.set_x(patch.get_x() + idx * 0.035)
|
||||||
|
|
||||||
|
ax[0].set_title('Accuracy after particle dropout')
|
||||||
|
ax[0].set_xlabel('Accuracy')
|
||||||
|
|
||||||
|
ax[1].pie(particle_dict.values(), labels=particle_dict.keys(), colors=colors, )
|
||||||
|
ax[1].set_title('Particle Count for ')
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
if debug:
|
||||||
|
plt.show()
|
||||||
|
else:
|
||||||
|
plt.savefig(Path(path_to_diff_df.parent / 'dropout_stacked_barplot.png'), dpi=300)
|
||||||
|
|
||||||
|
|
||||||
|
def run_particle_dropout_and_plot(run_path):
|
||||||
|
diff_store_path = run_particle_dropout_test(run_path)
|
||||||
|
plot_dropout_stacked_barplot(diff_store_path)
|
||||||
|
|
||||||
|
|
||||||
def flat_for_store(parameters):
|
def flat_for_store(parameters):
|
||||||
return (x.item() for y in parameters for x in y.detach().flatten())
|
return (x.item() for y in parameters for x in y.detach().flatten())
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
use_sparse_implementation = True
|
||||||
self_train = True
|
self_train = True
|
||||||
training = False
|
training = True
|
||||||
plotting = True
|
|
||||||
particle_analysis = True
|
|
||||||
as_sparse_network_test = True
|
|
||||||
train_to_id_first = False
|
train_to_id_first = False
|
||||||
self_train_alpha = 100
|
train_to_task_first = False
|
||||||
|
train_to_task_first_sequential = True
|
||||||
|
|
||||||
|
tsk_threshold = 0.855
|
||||||
|
self_train_alpha = 1
|
||||||
batch_train_beta = 1
|
batch_train_beta = 1
|
||||||
weight_hidden_size = 4
|
weight_hidden_size = 3
|
||||||
residual_skip = True
|
residual_skip = True
|
||||||
dropout = 0
|
n_seeds = 2
|
||||||
|
|
||||||
data_path = Path('data')
|
data_path = Path('data')
|
||||||
data_path.mkdir(exist_ok=True, parents=True)
|
data_path.mkdir(exist_ok=True, parents=True)
|
||||||
|
assert not (train_to_task_first and train_to_id_first)
|
||||||
|
|
||||||
st_str = f'{"" if self_train else "no_"}st'
|
st_str = f'{"" if self_train else "no_"}st'
|
||||||
a_str = f'_alpha_{self_train_alpha}' if self_train_alpha != 1 else ''
|
a_str = f'_alpha_{self_train_alpha}' if self_train_alpha != 1 else ''
|
||||||
res_str = f'{"" if residual_skip else "_no"}_res'
|
res_str = f'{"" if residual_skip else "_no_res"}'
|
||||||
dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||||
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
||||||
run_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{a_str}{res_str}{dr_str}{id_str}'
|
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first else ""}'
|
||||||
|
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{a_str}{res_str}{id_str}{tsk_str}'
|
||||||
|
|
||||||
model_path = run_path / '0000_trained_model.zip'
|
if use_sparse_implementation:
|
||||||
df_store_path = run_path / 'train_store.csv'
|
metanet_class = SparseNetwork
|
||||||
weight_store_path = run_path / 'weight_store.csv'
|
else:
|
||||||
srnn_parameters = dict()
|
metanet_class = MetaNet
|
||||||
|
|
||||||
if training:
|
for seed in range(n_seeds):
|
||||||
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
seed_path = exp_path / str(seed)
|
||||||
try:
|
|
||||||
dataset = MNIST(str(data_path), transform=utility_transforms)
|
|
||||||
except RuntimeError:
|
|
||||||
dataset = MNIST(str(data_path), transform=utility_transforms, download=True)
|
|
||||||
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
|
||||||
|
|
||||||
interface = np.prod(dataset[0][0].shape)
|
model_path = seed_path / '0000_trained_model.zip'
|
||||||
metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip, dropout=dropout,
|
df_store_path = seed_path / 'train_store.csv'
|
||||||
weight_hidden_size=weight_hidden_size,
|
weight_store_path = seed_path / 'weight_store.csv'
|
||||||
).to(DEVICE)
|
srnn_parameters = dict()
|
||||||
meta_weight_count = sum(p.numel() for p in next(metanet.particles).parameters())
|
|
||||||
|
|
||||||
loss_fn = nn.CrossEntropyLoss()
|
if training:
|
||||||
optimizer = torch.optim.SGD(metanet.parameters(), lr=0.008, momentum=0.9)
|
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
||||||
|
try:
|
||||||
|
dataset = MNIST(str(data_path), transform=utility_transforms)
|
||||||
|
except RuntimeError:
|
||||||
|
dataset = MNIST(str(data_path), transform=utility_transforms, download=True)
|
||||||
|
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||||
|
|
||||||
train_store = new_storage_df('train', None)
|
interface = np.prod(dataset[0][0].shape)
|
||||||
weight_store = new_storage_df('weights', meta_weight_count)
|
metanet = metanet_class(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
|
||||||
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
weight_hidden_size=weight_hidden_size,).to(DEVICE)
|
||||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
meta_weight_count = sum(p.numel() for p in next(metanet.particles).parameters())
|
||||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
|
||||||
metanet = metanet.train()
|
|
||||||
if is_validation_epoch:
|
|
||||||
metric = torchmetrics.Accuracy()
|
|
||||||
else:
|
|
||||||
metric = None
|
|
||||||
init_st = train_to_id_first and all(x.is_fixpoint == FixTypes.identity_func for x in metanet.particles)
|
|
||||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
|
||||||
if (self_train and is_self_train_epoch) or init_st:
|
|
||||||
# Zero your gradients for every batch!
|
|
||||||
optimizer.zero_grad()
|
|
||||||
self_train_loss = metanet.combined_self_train() * self_train_alpha
|
|
||||||
self_train_loss.backward()
|
|
||||||
# Adjust learning weights
|
|
||||||
optimizer.step()
|
|
||||||
step_log = dict(Epoch=epoch, Batch=batch, Metric='Self Train Loss', Score=self_train_loss.item())
|
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
|
||||||
if train_to_id_first <= epoch:
|
|
||||||
# Zero your gradients for every batch!
|
|
||||||
optimizer.zero_grad()
|
|
||||||
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
|
||||||
y = metanet(batch_x)
|
|
||||||
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
|
||||||
loss = loss_fn(y, batch_y.to(torch.long)) * batch_train_beta
|
|
||||||
loss.backward()
|
|
||||||
|
|
||||||
# Adjust learning weights
|
loss_fn = nn.CrossEntropyLoss()
|
||||||
optimizer.step()
|
optimizer = torch.optim.SGD(metanet.parameters(), lr=0.008, momentum=0.9)
|
||||||
|
|
||||||
step_log = dict(Epoch=epoch, Batch=batch,
|
train_store = new_storage_df('train', None)
|
||||||
Metric='Task Loss', Score=loss.item())
|
weight_store = new_storage_df('weights', meta_weight_count)
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
init_tsk = train_to_task_first
|
||||||
if is_validation_epoch:
|
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
||||||
metric(y.cpu(), batch_y.cpu())
|
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
||||||
|
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
||||||
|
metanet = metanet.train()
|
||||||
|
if is_validation_epoch:
|
||||||
|
metric = torchmetrics.Accuracy()
|
||||||
|
else:
|
||||||
|
metric = None
|
||||||
|
init_st = train_to_id_first and not all(x.is_fixpoint == ft.identity_func for x in metanet.particles)
|
||||||
|
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
||||||
|
if self_train and not init_tsk and (is_self_train_epoch or init_st):
|
||||||
|
# Zero your gradients for every batch!
|
||||||
|
optimizer.zero_grad()
|
||||||
|
self_train_loss = metanet.combined_self_train() * self_train_alpha
|
||||||
|
self_train_loss.backward()
|
||||||
|
# Adjust learning weights
|
||||||
|
optimizer.step()
|
||||||
|
step_log = dict(Epoch=epoch, Batch=batch,
|
||||||
|
Metric='Self Train Loss', Score=self_train_loss.item())
|
||||||
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
if not init_st:
|
||||||
|
# Zero your gradients for every batch!
|
||||||
|
optimizer.zero_grad()
|
||||||
|
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||||
|
y_pred = metanet(batch_x)
|
||||||
|
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
||||||
|
loss = loss_fn(y_pred, batch_y.to(torch.long)) * batch_train_beta
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
if batch >= 3 and debug:
|
# Adjust learning weights
|
||||||
break
|
optimizer.step()
|
||||||
|
|
||||||
if is_validation_epoch:
|
step_log = dict(Epoch=epoch, Batch=batch,
|
||||||
metanet = metanet.eval()
|
Metric='Task Loss', Score=loss.item())
|
||||||
if train_to_id_first <= epoch:
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
if is_validation_epoch:
|
||||||
|
metric(y_pred.cpu(), batch_y.cpu())
|
||||||
|
|
||||||
|
if batch >= 3 and debug:
|
||||||
|
break
|
||||||
|
|
||||||
|
if is_validation_epoch:
|
||||||
|
metanet = metanet.eval()
|
||||||
|
if train_to_id_first <= epoch:
|
||||||
|
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||||
|
Metric='Train Accuracy', Score=metric.compute().item())
|
||||||
|
train_store.loc[train_store.shape[0]] = validation_log
|
||||||
|
|
||||||
|
accuracy = checkpoint_and_validate(metanet, seed_path, epoch).item()
|
||||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||||
Metric='Train Accuracy', Score=metric.compute().item())
|
Metric='Test Accuracy', Score=accuracy)
|
||||||
train_store.loc[train_store.shape[0]] = validation_log
|
train_store.loc[train_store.shape[0]] = validation_log
|
||||||
|
if init_tsk or (train_to_task_first and train_to_task_first_sequential):
|
||||||
|
init_tsk = accuracy <= tsk_threshold
|
||||||
|
if init_st or is_validation_epoch:
|
||||||
|
counter_dict = defaultdict(lambda: 0)
|
||||||
|
# This returns ID-functions
|
||||||
|
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||||
|
for key, value in dict(counter_dict).items():
|
||||||
|
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||||
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
if init_st or is_validation_epoch:
|
||||||
|
for particle in metanet.particles:
|
||||||
|
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
||||||
|
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||||
|
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||||
|
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||||
|
train_store = new_storage_df('train', None)
|
||||||
|
weight_store = new_storage_df('weights', meta_weight_count)
|
||||||
|
|
||||||
accuracy = checkpoint_and_validate(metanet, run_path, epoch)
|
metanet.eval()
|
||||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
|
||||||
Metric='Test Accuracy', Score=accuracy.item())
|
|
||||||
train_store.loc[train_store.shape[0]] = validation_log
|
|
||||||
if particle_analysis and (init_st or is_validation_epoch):
|
|
||||||
counter_dict = defaultdict(lambda: 0)
|
|
||||||
# This returns ID-functions
|
|
||||||
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
|
||||||
for key, value in dict(counter_dict).items():
|
|
||||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
|
||||||
if init_st or is_validation_epoch:
|
|
||||||
for particle in metanet.particles:
|
|
||||||
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
|
||||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
|
||||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
|
||||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
|
||||||
train_store = new_storage_df('train', None)
|
|
||||||
weight_store = new_storage_df('weights', meta_weight_count)
|
|
||||||
|
|
||||||
metanet.eval()
|
|
||||||
if particle_analysis:
|
|
||||||
counter_dict = defaultdict(lambda: 0)
|
counter_dict = defaultdict(lambda: 0)
|
||||||
# This returns ID-functions
|
# This returns ID-functions
|
||||||
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||||
for key, value in dict(counter_dict).items():
|
for key, value in dict(counter_dict).items():
|
||||||
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
|
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True)
|
accuracy = checkpoint_and_validate(metanet, seed_path, EPOCH, final_model=True)
|
||||||
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
||||||
Metric='Test Accuracy', Score=accuracy.item())
|
Metric='Test Accuracy', Score=accuracy.item())
|
||||||
for particle in metanet.particles:
|
for particle in metanet.particles:
|
||||||
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
|
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
|
||||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||||
|
|
||||||
train_store.loc[train_store.shape[0]] = validation_log
|
train_store.loc[train_store.shape[0]] = validation_log
|
||||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||||
|
|
||||||
if plotting:
|
|
||||||
plot_training_result(df_store_path)
|
plot_training_result(df_store_path)
|
||||||
if particle_analysis:
|
plot_training_particle_types(df_store_path)
|
||||||
plot_training_particle_types(df_store_path)
|
|
||||||
|
|
||||||
if particle_analysis:
|
|
||||||
try:
|
try:
|
||||||
model_path = next(run_path.glob(f'*e{EPOCH}.tp'))
|
model_path = next(seed_path.glob(f'*e{EPOCH}.tp'))
|
||||||
except StopIteration:
|
except StopIteration:
|
||||||
print('Model pattern did not trigger.')
|
print('Model pattern did not trigger.')
|
||||||
print(f'Search path was: {run_path}:')
|
print(f'Search path was: {seed_path}:')
|
||||||
print(f'Found Models are: {list(run_path.rglob(".tp"))}')
|
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
|
||||||
exit(1)
|
exit(1)
|
||||||
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
||||||
counter_dict = defaultdict(lambda: 0)
|
|
||||||
_ = test_for_fixpoints(counter_dict, list(latest_model.particles))
|
|
||||||
tqdm.write(str(dict(counter_dict)))
|
|
||||||
|
|
||||||
if as_sparse_network_test:
|
run_particle_dropout_and_plot(seed_path)
|
||||||
acc_pre = validate(model_path, ratio=1).item()
|
plot_network_connectivity_by_fixtype(model_path)
|
||||||
diff_df = pd.DataFrame(columns=['Particle Type', 'Accuracy', 'Diff'])
|
|
||||||
for fixpoint_type in FixTypes.all_types():
|
|
||||||
new_model = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero(fixpoint_type)
|
|
||||||
if [x for x in new_model.particles if x.is_fixpoint == fixpoint_type]:
|
|
||||||
new_ckpt = set_checkpoint(new_model, model_path.parent, fixpoint_type, final_model=True)
|
|
||||||
acc_post = validate(new_ckpt, ratio=1).item()
|
|
||||||
acc_diff = abs(acc_post-acc_pre)
|
|
||||||
tqdm.write(f'Zero_ident diff = {acc_diff}')
|
|
||||||
diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff)
|
|
||||||
|
|
||||||
if plotting:
|
if n_seeds >= 2:
|
||||||
plt.clf()
|
pass
|
||||||
fig, ax = plt.subplots(ncols=2)
|
|
||||||
labels = ['Full Network', 'Sparse, No Identity', 'Sparse, No Other']
|
|
||||||
colors = sns.color_palette()[:diff_df.shape[0]] if diff_df.shape[0] >= 2 else sns.color_palette()[0]
|
|
||||||
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0])
|
|
||||||
# noinspection PyUnboundLocalVariable
|
|
||||||
for idx, patch in enumerate(barplot.patches):
|
|
||||||
if idx != 0:
|
|
||||||
# we recenter the bar
|
|
||||||
patch.set_x(patch.get_x() + idx * 0.035)
|
|
||||||
|
|
||||||
ax[0].set_title('Accuracy after particle dropout')
|
|
||||||
ax[0].set_xlabel('Accuracy')
|
|
||||||
# ax[0].legend()
|
|
||||||
|
|
||||||
ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=colors, )
|
|
||||||
ax[1].set_title('Particle Count for ')
|
|
||||||
# ax[1].set_xlabel('')
|
|
||||||
|
|
||||||
plt.tight_layout()
|
|
||||||
if debug:
|
|
||||||
plt.show()
|
|
||||||
else:
|
|
||||||
plt.savefig(Path(run_path / 'dropout_stacked_barplot.png'), dpi=300)
|
|
||||||
|
13
network.py
13
network.py
@ -68,7 +68,6 @@ class Net(nn.Module):
|
|||||||
for weight_id, weight_value in enumerate(self.state_dict()[layer_name][line_id]):
|
for weight_id, weight_value in enumerate(self.state_dict()[layer_name][line_id]):
|
||||||
self.state_dict()[layer_name][line_id][weight_id] = new_weights[i]
|
self.state_dict()[layer_name][line_id][weight_id] = new_weights[i]
|
||||||
i += 1
|
i += 1
|
||||||
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def __init__(self, i_size: int, h_size: int, o_size: int, name=None, start_time=1) -> None:
|
def __init__(self, i_size: int, h_size: int, o_size: int, name=None, start_time=1) -> None:
|
||||||
@ -100,7 +99,6 @@ class Net(nn.Module):
|
|||||||
|
|
||||||
self._weight_pos_enc_and_mask = None
|
self._weight_pos_enc_and_mask = None
|
||||||
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def _weight_pos_enc(self):
|
def _weight_pos_enc(self):
|
||||||
if self._weight_pos_enc_and_mask is None:
|
if self._weight_pos_enc_and_mask is None:
|
||||||
@ -127,8 +125,8 @@ class Net(nn.Module):
|
|||||||
|
|
||||||
# Normalize 1,2,3 column of dim 1
|
# Normalize 1,2,3 column of dim 1
|
||||||
last_pos_idx = self.input_size - 4
|
last_pos_idx = self.input_size - 4
|
||||||
norm2 = weight_matrix[:, 1:-last_pos_idx].pow(2).sum(keepdim=True, dim=0).sqrt()
|
max_per_col, _ = weight_matrix[:, 1:-last_pos_idx].max(keepdim=True, dim=0)
|
||||||
weight_matrix[:, 1:-last_pos_idx] = (weight_matrix[:, 1:-last_pos_idx] / norm2) + 1e-8
|
weight_matrix[:, 1:-last_pos_idx] = (weight_matrix[:, 1:-last_pos_idx] / max_per_col) + 1e-8
|
||||||
|
|
||||||
# computations
|
# computations
|
||||||
# create a mask where pos is 0 if it is to be replaced
|
# create a mask where pos is 0 if it is to be replaced
|
||||||
@ -389,6 +387,7 @@ class MetaNet(nn.Module):
|
|||||||
def __init__(self, interface=4, depth=3, width=4, out=1, activation=None, residual_skip=True, dropout=0,
|
def __init__(self, interface=4, depth=3, width=4, out=1, activation=None, residual_skip=True, dropout=0,
|
||||||
weight_interface=5, weight_hidden_size=2, weight_output_size=1,):
|
weight_interface=5, weight_hidden_size=2, weight_output_size=1,):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
self.residual_skip = residual_skip
|
||||||
self.dropout = dropout
|
self.dropout = dropout
|
||||||
self.activation = activation
|
self.activation = activation
|
||||||
self.out = out
|
self.out = out
|
||||||
@ -398,7 +397,6 @@ class MetaNet(nn.Module):
|
|||||||
self.weight_interface = weight_interface
|
self.weight_interface = weight_interface
|
||||||
self.weight_hidden_size = weight_hidden_size
|
self.weight_hidden_size = weight_hidden_size
|
||||||
self.weight_output_size = weight_output_size
|
self.weight_output_size = weight_output_size
|
||||||
|
|
||||||
self._meta_layer_first = MetaLayer(name=f'L{0}',
|
self._meta_layer_first = MetaLayer(name=f'L{0}',
|
||||||
interface=self.interface,
|
interface=self.interface,
|
||||||
width=self.width,
|
width=self.width,
|
||||||
@ -411,6 +409,7 @@ class MetaNet(nn.Module):
|
|||||||
weight_interface=weight_interface,
|
weight_interface=weight_interface,
|
||||||
weight_hidden_size=weight_hidden_size,
|
weight_hidden_size=weight_hidden_size,
|
||||||
weight_output_size=weight_output_size,
|
weight_output_size=weight_output_size,
|
||||||
|
|
||||||
) for layer_idx in range(self.depth - 2)]
|
) for layer_idx in range(self.depth - 2)]
|
||||||
)
|
)
|
||||||
self._meta_layer_last = MetaLayer(name=f'L{len(self._meta_layer_list)}',
|
self._meta_layer_last = MetaLayer(name=f'L{len(self._meta_layer_list)}',
|
||||||
@ -441,10 +440,10 @@ class MetaNet(nn.Module):
|
|||||||
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
|
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
|
||||||
if self.dropout != 0:
|
if self.dropout != 0:
|
||||||
tensor = self.dropout_layer(tensor)
|
tensor = self.dropout_layer(tensor)
|
||||||
if idx % 2 == 1:
|
if idx % 2 == 1 and self.residual_skip:
|
||||||
x = tensor.clone()
|
x = tensor.clone()
|
||||||
tensor = meta_layer(tensor)
|
tensor = meta_layer(tensor)
|
||||||
if idx % 2 == 0:
|
if idx % 2 == 0 and self.residual_skip:
|
||||||
tensor = tensor + x
|
tensor = tensor + x
|
||||||
if self.dropout != 0:
|
if self.dropout != 0:
|
||||||
x = self.dropout_layer(x)
|
x = self.dropout_layer(x)
|
||||||
|
@ -56,7 +56,7 @@ if __name__ == '__main__':
|
|||||||
d_test = DataLoader(mnist_test, batch_size=BATCHSIZE, shuffle=False, drop_last=True, num_workers=WORKER)
|
d_test = DataLoader(mnist_test, batch_size=BATCHSIZE, shuffle=False, drop_last=True, num_workers=WORKER)
|
||||||
loss_fn = nn.CrossEntropyLoss()
|
loss_fn = nn.CrossEntropyLoss()
|
||||||
|
|
||||||
model = torch.load("trained_model_ckpt_e200.tp", map_location=DEVICE).eval()
|
model = torch.load("mn_st_40_6_res_Tsk_0.85", map_location=DEVICE).eval()
|
||||||
weights = extract_weights_from_model(model)
|
weights = extract_weights_from_model(model)
|
||||||
test_weights_as_model(weights, d_test)
|
test_weights_as_model(weights, d_test)
|
||||||
|
|
||||||
|
209
sparse_net.py
209
sparse_net.py
@ -1,85 +1,114 @@
|
|||||||
|
from torch import nn
|
||||||
|
|
||||||
from network import Net
|
from network import Net
|
||||||
from typing import List
|
|
||||||
from functionalities_test import is_identity_function
|
from functionalities_test import is_identity_function
|
||||||
from tqdm import tqdm,trange
|
from tqdm import tqdm,trange
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import torch
|
import torch
|
||||||
from torch.nn import Flatten
|
from torch.nn import Flatten
|
||||||
from torch.utils.data import Dataset, DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
import torch.nn.functional as F
|
||||||
from torchvision.datasets import MNIST
|
from torchvision.datasets import MNIST
|
||||||
from torchvision.transforms import ToTensor, Compose, Resize
|
from torchvision.transforms import ToTensor, Compose, Resize
|
||||||
|
|
||||||
|
|
||||||
class SparseLayer():
|
class SparseLayer(nn.Module):
|
||||||
def __init__(self, nr_nets, interface=5, depth=3, width=2, out=1):
|
def __init__(self, nr_nets, interface=5, depth=3, width=2, out=1):
|
||||||
|
super(SparseLayer, self).__init__()
|
||||||
|
|
||||||
self.nr_nets = nr_nets
|
self.nr_nets = nr_nets
|
||||||
self.interface_dim = interface
|
self.interface_dim = interface
|
||||||
self.depth_dim = depth
|
self.depth_dim = depth
|
||||||
self.hidden_dim = width
|
self.hidden_dim = width
|
||||||
self.out_dim = out
|
self.out_dim = out
|
||||||
self.dummy_net = Net(self.interface_dim, self.hidden_dim, self.out_dim)
|
self.dummy_net = Net(self.interface_dim, self.hidden_dim, self.out_dim)
|
||||||
|
|
||||||
self.sparse_sub_layer = []
|
self.sparse_sub_layer = list()
|
||||||
self.weights = []
|
self.indices = list()
|
||||||
for layer_id in range(depth):
|
self.diag_shapes = list()
|
||||||
layer, weights = self.coo_sparse_layer(layer_id)
|
self.weights = nn.ParameterList()
|
||||||
self.sparse_sub_layer.append(layer)
|
self._particles = None
|
||||||
|
|
||||||
|
for layer_id in range(self.depth_dim):
|
||||||
|
indices, weights, diag_shape = self.coo_sparse_layer(layer_id)
|
||||||
|
self.indices.append(indices)
|
||||||
|
self.diag_shapes.append(diag_shape)
|
||||||
self.weights.append(weights)
|
self.weights.append(weights)
|
||||||
|
|
||||||
def coo_sparse_layer(self, layer_id):
|
def coo_sparse_layer(self, layer_id):
|
||||||
layer_shape = list(self.dummy_net.parameters())[layer_id].shape
|
layer_shape = list(self.dummy_net.parameters())[layer_id].shape
|
||||||
#print(layer_shape) #(out_cells, in_cells) -> (2,5), (2,2), (1,2)
|
|
||||||
|
|
||||||
sparse_diagonal = np.eye(self.nr_nets).repeat(layer_shape[0], axis=-2).repeat(layer_shape[1], axis=-1)
|
sparse_diagonal = np.eye(self.nr_nets).repeat(layer_shape[0], axis=-2).repeat(layer_shape[1], axis=-1)
|
||||||
indices = np.argwhere(sparse_diagonal == 1).T
|
indices = torch.Tensor(np.argwhere(sparse_diagonal == 1).T)
|
||||||
values = torch.nn.Parameter(torch.randn((self.nr_nets * (layer_shape[0]*layer_shape[1]) )))
|
values = torch.nn.Parameter(
|
||||||
#values = torch.randn((self.nr_nets * layer_shape[0]*layer_shape[1] ))
|
torch.randn((self.nr_nets * (layer_shape[0]*layer_shape[1]))), requires_grad=True
|
||||||
s = torch.sparse_coo_tensor(indices, values, sparse_diagonal.shape, requires_grad=True)
|
)
|
||||||
print(f"L{layer_id}:", s.shape)
|
|
||||||
return s, values
|
return indices, values, sparse_diagonal.shape
|
||||||
|
|
||||||
def get_self_train_inputs_and_targets(self):
|
def get_self_train_inputs_and_targets(self):
|
||||||
encoding_matrix, mask = self.dummy_net._weight_pos_enc
|
encoding_matrix, mask = self.dummy_net._weight_pos_enc
|
||||||
|
|
||||||
# view weights of each sublayer in equal chunks, each column representing weights of one selfrepNN
|
# view weights of each sublayer in equal chunks, each column representing weights of one selfrepNN
|
||||||
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2 and first hidden*out weights of layer3 = first net
|
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2
|
||||||
weights = [layer.view(-1, int(len(layer)/self.nr_nets)) for layer in self.weights] #[nr_layers*[nr_net*nr_weights_layer_i]]
|
# and first hidden*out weights of layer3 = first net
|
||||||
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1,1) for i in range(self.nr_nets)] #[nr_net*[nr_weights]]
|
# [nr_layers*[nr_net*nr_weights_layer_i]]
|
||||||
inputs = torch.hstack([encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask) for i in range(self.nr_nets)]) #(16, 25)
|
weights = [layer.view(-1, int(len(layer)/self.nr_nets)) for layer in self.weights]
|
||||||
|
# [nr_net*[nr_weights]]
|
||||||
|
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1, 1) for i in range(self.nr_nets)]
|
||||||
|
# (16, 25)
|
||||||
|
inputs = torch.hstack(
|
||||||
|
[encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask)
|
||||||
|
for i in range(self.nr_nets)]
|
||||||
|
)
|
||||||
targets = torch.hstack(weights_per_net)
|
targets = torch.hstack(weights_per_net)
|
||||||
return inputs.T, targets.T
|
return inputs.T.detach(), targets.T.detach()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def particles(self):
|
||||||
|
if self._particles is None:
|
||||||
|
self._particles = [Net(self.interface_dim, self.hidden_dim, self.out_dim) for _ in range(self.nr_nets)]
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
|
||||||
|
# Particle Weight Update
|
||||||
|
all_weights = [layer.view(-1, int(len(layer) / self.nr_nets)) for layer in self.weights]
|
||||||
|
weights_per_net = [torch.cat([layer[i] for layer in all_weights]).view(-1, 1) for i in
|
||||||
|
range(self.nr_nets)] # [nr_net*[nr_weights]]
|
||||||
|
for particles, weights in zip(self._particles, weights_per_net):
|
||||||
|
particles.apply_weights(weights)
|
||||||
|
return self._particles
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
X1 = torch.sparse.mm(self.sparse_sub_layer[0], x)
|
for indices, diag_shapes, weights in zip(self.indices, self.diag_shapes, self.weights):
|
||||||
#print("X1", X1.shape)
|
s = torch.sparse_coo_tensor(indices, weights, diag_shapes, requires_grad=True, device=x.device)
|
||||||
|
x = torch.sparse.mm(s, x)
|
||||||
|
return x
|
||||||
|
|
||||||
X2 = torch.sparse.mm(self.sparse_sub_layer[1], X1)
|
def to(self, *args, **kwargs):
|
||||||
#print("X2", X2.shape)
|
super(SparseLayer, self).to(*args, **kwargs)
|
||||||
|
self.sparse_sub_layer = [sparse_sub_layer.to(*args, **kwargs) for sparse_sub_layer in self.sparse_sub_layer]
|
||||||
X3 = torch.sparse.mm(self.sparse_sub_layer[2], X2)
|
return self
|
||||||
#print("X3", X3.shape)
|
|
||||||
|
|
||||||
return X3
|
|
||||||
|
|
||||||
|
|
||||||
def test_sparse_layer():
|
def test_sparse_layer():
|
||||||
net = SparseLayer(500) #50 parallel nets
|
net = SparseLayer(500) #50 parallel nets
|
||||||
loss_fn = torch.nn.MSELoss(reduction="sum")
|
loss_fn = torch.nn.MSELoss(reduction="sum")
|
||||||
optimizer = torch.optim.SGD([weight for weight in net.weights], lr=0.004, momentum=0.9)
|
optimizer = torch.optim.SGD(net.weights, lr=0.004, momentum=0.9)
|
||||||
#optimizer = torch.optim.SGD([layer for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
||||||
|
|
||||||
for train_iteration in trange(1000):
|
for train_iteration in trange(1000):
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
X,Y = net.get_self_train_inputs_and_targets()
|
X,Y = net.get_self_train_inputs_and_targets()
|
||||||
out = net(X)
|
out = net(X)
|
||||||
|
|
||||||
loss = loss_fn(out, Y)
|
loss = loss_fn(out, Y)
|
||||||
|
|
||||||
# print("X:", X.shape, "Y:", Y.shape)
|
# print("X:", X.shape, "Y:", Y.shape)
|
||||||
# print("OUT", out.shape)
|
# print("OUT", out.shape)
|
||||||
# print("LOSS", loss.item())
|
# print("LOSS", loss.item())
|
||||||
|
|
||||||
loss.backward(retain_graph=True)
|
loss.backward(retain_graph=True)
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
@ -88,54 +117,95 @@ def test_sparse_layer():
|
|||||||
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
|
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def embed_batch(x, repeat_dim):
|
def embed_batch(x, repeat_dim):
|
||||||
# x of shape (batchsize, flat_img_dim)
|
# x of shape (batchsize, flat_img_dim)
|
||||||
x = x.unsqueeze(-1) #(batchsize, flat_img_dim, 1)
|
x = x.unsqueeze(-1) #(batchsize, flat_img_dim, 1)
|
||||||
return torch.cat( (torch.zeros( x.shape[0], x.shape[1], 4), x), dim=2).repeat(1,1,repeat_dim) #(batchsize, flat_img_dim, encoding_dim*repeat_dim)
|
return torch.cat((torch.zeros(x.shape[0], x.shape[1], 4, device=x.device), x), dim=2).repeat(1, 1, repeat_dim) #(batchsize, flat_img_dim, encoding_dim*repeat_dim)
|
||||||
|
|
||||||
|
|
||||||
def embed_vector(x, repeat_dim):
|
def embed_vector(x, repeat_dim):
|
||||||
# x of shape [flat_img_dim]
|
# x of shape [flat_img_dim]
|
||||||
x = x.unsqueeze(-1) #(flat_img_dim, 1)
|
x = x.unsqueeze(-1) # (flat_img_dim, 1)
|
||||||
return torch.cat( (torch.zeros( x.shape[0], 4), x), dim=1).repeat(1,repeat_dim) #(flat_img_dim, encoding_dim*repeat_dim)
|
# (flat_img_dim, encoding_dim*repeat_dim)
|
||||||
|
return torch.cat((torch.zeros(x.shape[0], 4), x), dim=1).repeat(1,repeat_dim)
|
||||||
|
|
||||||
class SparseNetwork():
|
|
||||||
def __init__(self, input_dim, depth, width, out):
|
class SparseNetwork(nn.Module):
|
||||||
|
def __init__(self, input_dim, depth, width, out, residual_skip=True,
|
||||||
|
weight_interface=5, weight_hidden_size=2, weight_output_size=1
|
||||||
|
):
|
||||||
|
super(SparseNetwork, self).__init__()
|
||||||
|
self.residual_skip = residual_skip
|
||||||
self.input_dim = input_dim
|
self.input_dim = input_dim
|
||||||
self.depth_dim = depth
|
self.depth_dim = depth
|
||||||
self.hidden_dim = width
|
self.hidden_dim = width
|
||||||
self.out_dim = out
|
self.out_dim = out
|
||||||
self.sparse_layers = []
|
self.first_layer = SparseLayer(self.input_dim * self.hidden_dim,
|
||||||
self.sparse_layers.append( SparseLayer( self.input_dim * self.hidden_dim ))
|
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
|
||||||
self.sparse_layers.extend([ SparseLayer( self.hidden_dim * self.hidden_dim ) for layer_idx in range(self.depth_dim - 2)])
|
self.last_layer = SparseLayer(self.hidden_dim * self.out_dim,
|
||||||
self.sparse_layers.append( SparseLayer( self.hidden_dim * self.out_dim ))
|
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
|
||||||
|
self.hidden_layers = nn.ModuleList([
|
||||||
|
SparseLayer(self.hidden_dim * self.hidden_dim,
|
||||||
|
interface=weight_interface, width=weight_hidden_size, out=weight_output_size
|
||||||
|
) for _ in range(self.depth_dim - 2)])
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
|
|
||||||
for sparse_layer in self.sparse_layers[:-1]:
|
tensor = self.sparse_layer_forward(x, self.first_layer)
|
||||||
# batch pass (one by one, sparse bmm doesn't support grad)
|
for nl_idx, network_layer in enumerate(self.hidden_layers):
|
||||||
if len(x.shape) > 1:
|
if nl_idx % 2 == 0 and self.residual_skip:
|
||||||
embedded_inpt = embed_batch(x, sparse_layer.nr_nets)
|
residual = tensor.clone()
|
||||||
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(self.hidden_dim, x.shape[1]).sum(dim=1) for inpt in embedded_inpt]) #[batchsize, hidden*inpt_dim, feature_dim]
|
# Sparse Layer pass
|
||||||
# vector
|
tensor = self.sparse_layer_forward(tensor, network_layer)
|
||||||
else:
|
|
||||||
embedded_inpt = embed_vector(x, sparse_layer.nr_nets)
|
if nl_idx % 2 != 0 and self.residual_skip:
|
||||||
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(self.hidden_dim, x.shape[1]).sum(dim=1)
|
# noinspection PyUnboundLocalVariable
|
||||||
print("out", x.shape)
|
tensor += residual
|
||||||
|
tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim)
|
||||||
# output layer
|
return tensor
|
||||||
sparse_layer = self.sparse_layers[-1]
|
|
||||||
|
def sparse_layer_forward(self, x, sparse_layer, view_dim=None):
|
||||||
|
view_dim = view_dim if view_dim else self.hidden_dim
|
||||||
|
# batch pass (one by one, sparse bmm doesn't support grad)
|
||||||
if len(x.shape) > 1:
|
if len(x.shape) > 1:
|
||||||
embedded_inpt = embed_batch(x, sparse_layer.nr_nets)
|
embedded_inpt = embed_batch(x, sparse_layer.nr_nets)
|
||||||
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(self.out_dim, x.shape[1]).sum(dim=1) for inpt in embedded_inpt]) #[batchsize, hidden*inpt_dim, feature_dim]
|
# [batchsize, hidden*inpt_dim, feature_dim]
|
||||||
|
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(view_dim, x.shape[1]).sum(dim=1) for inpt in
|
||||||
|
embedded_inpt])
|
||||||
|
# vector
|
||||||
else:
|
else:
|
||||||
embedded_inpt = embed_vector(x, sparse_layer.nr_nets)
|
embedded_inpt = embed_vector(x, sparse_layer.nr_nets)
|
||||||
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(self.out_dim, x.shape[1]).sum(dim=1)
|
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(view_dim, x.shape[1]).sum(dim=1)
|
||||||
print("out", x.shape)
|
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
@property
|
||||||
|
def particles(self):
|
||||||
|
particles = []
|
||||||
|
particles.extend(self.first_layer.particles)
|
||||||
|
for layer in self.hidden_layers:
|
||||||
|
particles.extend(layer.particles)
|
||||||
|
particles.extend(self.last_layer.particles)
|
||||||
|
return iter(particles)
|
||||||
|
|
||||||
|
def to(self, *args, **kwargs):
|
||||||
|
super(SparseNetwork, self).to(*args, **kwargs)
|
||||||
|
self.first_layer = self.first_layer.to(*args, **kwargs)
|
||||||
|
self.last_layer = self.last_layer.to(*args, **kwargs)
|
||||||
|
self.hidden_layers = nn.ModuleList([hidden_layer.to(*args, **kwargs) for hidden_layer in self.hidden_layers])
|
||||||
|
return self
|
||||||
|
|
||||||
|
def combined_self_train(self):
|
||||||
|
import time
|
||||||
|
t = time.time()
|
||||||
|
losses = []
|
||||||
|
for layer in [self.first_layer, *self.hidden_layers, self.last_layer]:
|
||||||
|
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||||
|
output = layer(x)
|
||||||
|
|
||||||
|
losses.append(F.mse_loss(output, target_data))
|
||||||
|
print('Time Taken:', time.time() - t)
|
||||||
|
return torch.hstack(losses).sum(dim=-1, keepdim=True)
|
||||||
|
|
||||||
|
|
||||||
def test_sparse_net():
|
def test_sparse_net():
|
||||||
utility_transforms = Compose([ Resize((10, 10)), ToTensor(), Flatten(start_dim=0)])
|
utility_transforms = Compose([ Resize((10, 10)), ToTensor(), Flatten(start_dim=0)])
|
||||||
@ -150,7 +220,6 @@ def test_sparse_net():
|
|||||||
data_dim = np.prod(dataset[0][0].shape)
|
data_dim = np.prod(dataset[0][0].shape)
|
||||||
metanet = SparseNetwork(data_dim, depth=3, width=5, out=10)
|
metanet = SparseNetwork(data_dim, depth=3, width=5, out=10)
|
||||||
batchx, batchy = next(iter(d))
|
batchx, batchy = next(iter(d))
|
||||||
batchx.shape, batchy.shape
|
|
||||||
metanet(batchx)
|
metanet(batchx)
|
||||||
|
|
||||||
|
|
||||||
@ -176,6 +245,6 @@ def test_manual_for_loop():
|
|||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_sparse_layer()
|
test_sparse_layer()
|
||||||
test_sparse_net()
|
# test_sparse_net()
|
||||||
#for comparison
|
# for comparison
|
||||||
test_manual_for_loop()
|
test_manual_for_loop()
|
Reference in New Issue
Block a user