sparse network redo
This commit is contained in:
209
sparse_net.py
209
sparse_net.py
@ -1,85 +1,114 @@
|
||||
from torch import nn
|
||||
|
||||
from network import Net
|
||||
from typing import List
|
||||
from functionalities_test import is_identity_function
|
||||
from tqdm import tqdm,trange
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import torch
|
||||
from torch.nn import Flatten
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torch.utils.data import DataLoader
|
||||
import torch.nn.functional as F
|
||||
from torchvision.datasets import MNIST
|
||||
from torchvision.transforms import ToTensor, Compose, Resize
|
||||
|
||||
|
||||
class SparseLayer():
|
||||
class SparseLayer(nn.Module):
|
||||
def __init__(self, nr_nets, interface=5, depth=3, width=2, out=1):
|
||||
super(SparseLayer, self).__init__()
|
||||
|
||||
self.nr_nets = nr_nets
|
||||
self.interface_dim = interface
|
||||
self.depth_dim = depth
|
||||
self.hidden_dim = width
|
||||
self.out_dim = out
|
||||
self.dummy_net = Net(self.interface_dim, self.hidden_dim, self.out_dim)
|
||||
|
||||
self.sparse_sub_layer = []
|
||||
self.weights = []
|
||||
for layer_id in range(depth):
|
||||
layer, weights = self.coo_sparse_layer(layer_id)
|
||||
self.sparse_sub_layer.append(layer)
|
||||
|
||||
self.sparse_sub_layer = list()
|
||||
self.indices = list()
|
||||
self.diag_shapes = list()
|
||||
self.weights = nn.ParameterList()
|
||||
self._particles = None
|
||||
|
||||
for layer_id in range(self.depth_dim):
|
||||
indices, weights, diag_shape = self.coo_sparse_layer(layer_id)
|
||||
self.indices.append(indices)
|
||||
self.diag_shapes.append(diag_shape)
|
||||
self.weights.append(weights)
|
||||
|
||||
|
||||
def coo_sparse_layer(self, layer_id):
|
||||
layer_shape = list(self.dummy_net.parameters())[layer_id].shape
|
||||
#print(layer_shape) #(out_cells, in_cells) -> (2,5), (2,2), (1,2)
|
||||
|
||||
sparse_diagonal = np.eye(self.nr_nets).repeat(layer_shape[0], axis=-2).repeat(layer_shape[1], axis=-1)
|
||||
indices = np.argwhere(sparse_diagonal == 1).T
|
||||
values = torch.nn.Parameter(torch.randn((self.nr_nets * (layer_shape[0]*layer_shape[1]) )))
|
||||
#values = torch.randn((self.nr_nets * layer_shape[0]*layer_shape[1] ))
|
||||
s = torch.sparse_coo_tensor(indices, values, sparse_diagonal.shape, requires_grad=True)
|
||||
print(f"L{layer_id}:", s.shape)
|
||||
return s, values
|
||||
indices = torch.Tensor(np.argwhere(sparse_diagonal == 1).T)
|
||||
values = torch.nn.Parameter(
|
||||
torch.randn((self.nr_nets * (layer_shape[0]*layer_shape[1]))), requires_grad=True
|
||||
)
|
||||
|
||||
return indices, values, sparse_diagonal.shape
|
||||
|
||||
def get_self_train_inputs_and_targets(self):
|
||||
encoding_matrix, mask = self.dummy_net._weight_pos_enc
|
||||
|
||||
# view weights of each sublayer in equal chunks, each column representing weights of one selfrepNN
|
||||
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2 and first hidden*out weights of layer3 = first net
|
||||
weights = [layer.view(-1, int(len(layer)/self.nr_nets)) for layer in self.weights] #[nr_layers*[nr_net*nr_weights_layer_i]]
|
||||
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1,1) for i in range(self.nr_nets)] #[nr_net*[nr_weights]]
|
||||
inputs = torch.hstack([encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask) for i in range(self.nr_nets)]) #(16, 25)
|
||||
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2
|
||||
# and first hidden*out weights of layer3 = first net
|
||||
# [nr_layers*[nr_net*nr_weights_layer_i]]
|
||||
weights = [layer.view(-1, int(len(layer)/self.nr_nets)) for layer in self.weights]
|
||||
# [nr_net*[nr_weights]]
|
||||
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1, 1) for i in range(self.nr_nets)]
|
||||
# (16, 25)
|
||||
inputs = torch.hstack(
|
||||
[encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask)
|
||||
for i in range(self.nr_nets)]
|
||||
)
|
||||
targets = torch.hstack(weights_per_net)
|
||||
return inputs.T, targets.T
|
||||
return inputs.T.detach(), targets.T.detach()
|
||||
|
||||
@property
|
||||
def particles(self):
|
||||
if self._particles is None:
|
||||
self._particles = [Net(self.interface_dim, self.hidden_dim, self.out_dim) for _ in range(self.nr_nets)]
|
||||
pass
|
||||
else:
|
||||
pass
|
||||
|
||||
# Particle Weight Update
|
||||
all_weights = [layer.view(-1, int(len(layer) / self.nr_nets)) for layer in self.weights]
|
||||
weights_per_net = [torch.cat([layer[i] for layer in all_weights]).view(-1, 1) for i in
|
||||
range(self.nr_nets)] # [nr_net*[nr_weights]]
|
||||
for particles, weights in zip(self._particles, weights_per_net):
|
||||
particles.apply_weights(weights)
|
||||
return self._particles
|
||||
|
||||
def __call__(self, x):
|
||||
X1 = torch.sparse.mm(self.sparse_sub_layer[0], x)
|
||||
#print("X1", X1.shape)
|
||||
for indices, diag_shapes, weights in zip(self.indices, self.diag_shapes, self.weights):
|
||||
s = torch.sparse_coo_tensor(indices, weights, diag_shapes, requires_grad=True, device=x.device)
|
||||
x = torch.sparse.mm(s, x)
|
||||
return x
|
||||
|
||||
X2 = torch.sparse.mm(self.sparse_sub_layer[1], X1)
|
||||
#print("X2", X2.shape)
|
||||
|
||||
X3 = torch.sparse.mm(self.sparse_sub_layer[2], X2)
|
||||
#print("X3", X3.shape)
|
||||
|
||||
return X3
|
||||
def to(self, *args, **kwargs):
|
||||
super(SparseLayer, self).to(*args, **kwargs)
|
||||
self.sparse_sub_layer = [sparse_sub_layer.to(*args, **kwargs) for sparse_sub_layer in self.sparse_sub_layer]
|
||||
return self
|
||||
|
||||
|
||||
def test_sparse_layer():
|
||||
net = SparseLayer(500) #50 parallel nets
|
||||
loss_fn = torch.nn.MSELoss(reduction="sum")
|
||||
optimizer = torch.optim.SGD([weight for weight in net.weights], lr=0.004, momentum=0.9)
|
||||
#optimizer = torch.optim.SGD([layer for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
||||
|
||||
optimizer = torch.optim.SGD(net.weights, lr=0.004, momentum=0.9)
|
||||
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
||||
|
||||
for train_iteration in trange(1000):
|
||||
optimizer.zero_grad()
|
||||
optimizer.zero_grad()
|
||||
X,Y = net.get_self_train_inputs_and_targets()
|
||||
out = net(X)
|
||||
|
||||
|
||||
loss = loss_fn(out, Y)
|
||||
|
||||
# print("X:", X.shape, "Y:", Y.shape)
|
||||
# print("OUT", out.shape)
|
||||
# print("LOSS", loss.item())
|
||||
|
||||
|
||||
loss.backward(retain_graph=True)
|
||||
optimizer.step()
|
||||
|
||||
@ -88,54 +117,95 @@ def test_sparse_layer():
|
||||
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def embed_batch(x, repeat_dim):
|
||||
# x of shape (batchsize, flat_img_dim)
|
||||
x = x.unsqueeze(-1) #(batchsize, flat_img_dim, 1)
|
||||
return torch.cat( (torch.zeros( x.shape[0], x.shape[1], 4), x), dim=2).repeat(1,1,repeat_dim) #(batchsize, flat_img_dim, encoding_dim*repeat_dim)
|
||||
return torch.cat((torch.zeros(x.shape[0], x.shape[1], 4, device=x.device), x), dim=2).repeat(1, 1, repeat_dim) #(batchsize, flat_img_dim, encoding_dim*repeat_dim)
|
||||
|
||||
|
||||
def embed_vector(x, repeat_dim):
|
||||
# x of shape [flat_img_dim]
|
||||
x = x.unsqueeze(-1) #(flat_img_dim, 1)
|
||||
return torch.cat( (torch.zeros( x.shape[0], 4), x), dim=1).repeat(1,repeat_dim) #(flat_img_dim, encoding_dim*repeat_dim)
|
||||
x = x.unsqueeze(-1) # (flat_img_dim, 1)
|
||||
# (flat_img_dim, encoding_dim*repeat_dim)
|
||||
return torch.cat((torch.zeros(x.shape[0], 4), x), dim=1).repeat(1,repeat_dim)
|
||||
|
||||
class SparseNetwork():
|
||||
def __init__(self, input_dim, depth, width, out):
|
||||
|
||||
class SparseNetwork(nn.Module):
|
||||
def __init__(self, input_dim, depth, width, out, residual_skip=True,
|
||||
weight_interface=5, weight_hidden_size=2, weight_output_size=1
|
||||
):
|
||||
super(SparseNetwork, self).__init__()
|
||||
self.residual_skip = residual_skip
|
||||
self.input_dim = input_dim
|
||||
self.depth_dim = depth
|
||||
self.hidden_dim = width
|
||||
self.out_dim = out
|
||||
self.sparse_layers = []
|
||||
self.sparse_layers.append( SparseLayer( self.input_dim * self.hidden_dim ))
|
||||
self.sparse_layers.extend([ SparseLayer( self.hidden_dim * self.hidden_dim ) for layer_idx in range(self.depth_dim - 2)])
|
||||
self.sparse_layers.append( SparseLayer( self.hidden_dim * self.out_dim ))
|
||||
self.first_layer = SparseLayer(self.input_dim * self.hidden_dim,
|
||||
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
|
||||
self.last_layer = SparseLayer(self.hidden_dim * self.out_dim,
|
||||
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
|
||||
self.hidden_layers = nn.ModuleList([
|
||||
SparseLayer(self.hidden_dim * self.hidden_dim,
|
||||
interface=weight_interface, width=weight_hidden_size, out=weight_output_size
|
||||
) for _ in range(self.depth_dim - 2)])
|
||||
|
||||
def __call__(self, x):
|
||||
|
||||
for sparse_layer in self.sparse_layers[:-1]:
|
||||
# batch pass (one by one, sparse bmm doesn't support grad)
|
||||
if len(x.shape) > 1:
|
||||
embedded_inpt = embed_batch(x, sparse_layer.nr_nets)
|
||||
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(self.hidden_dim, x.shape[1]).sum(dim=1) for inpt in embedded_inpt]) #[batchsize, hidden*inpt_dim, feature_dim]
|
||||
# vector
|
||||
else:
|
||||
embedded_inpt = embed_vector(x, sparse_layer.nr_nets)
|
||||
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(self.hidden_dim, x.shape[1]).sum(dim=1)
|
||||
print("out", x.shape)
|
||||
|
||||
# output layer
|
||||
sparse_layer = self.sparse_layers[-1]
|
||||
|
||||
tensor = self.sparse_layer_forward(x, self.first_layer)
|
||||
for nl_idx, network_layer in enumerate(self.hidden_layers):
|
||||
if nl_idx % 2 == 0 and self.residual_skip:
|
||||
residual = tensor.clone()
|
||||
# Sparse Layer pass
|
||||
tensor = self.sparse_layer_forward(tensor, network_layer)
|
||||
|
||||
if nl_idx % 2 != 0 and self.residual_skip:
|
||||
# noinspection PyUnboundLocalVariable
|
||||
tensor += residual
|
||||
tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim)
|
||||
return tensor
|
||||
|
||||
def sparse_layer_forward(self, x, sparse_layer, view_dim=None):
|
||||
view_dim = view_dim if view_dim else self.hidden_dim
|
||||
# batch pass (one by one, sparse bmm doesn't support grad)
|
||||
if len(x.shape) > 1:
|
||||
embedded_inpt = embed_batch(x, sparse_layer.nr_nets)
|
||||
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(self.out_dim, x.shape[1]).sum(dim=1) for inpt in embedded_inpt]) #[batchsize, hidden*inpt_dim, feature_dim]
|
||||
# [batchsize, hidden*inpt_dim, feature_dim]
|
||||
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(view_dim, x.shape[1]).sum(dim=1) for inpt in
|
||||
embedded_inpt])
|
||||
# vector
|
||||
else:
|
||||
embedded_inpt = embed_vector(x, sparse_layer.nr_nets)
|
||||
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(self.out_dim, x.shape[1]).sum(dim=1)
|
||||
print("out", x.shape)
|
||||
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(view_dim, x.shape[1]).sum(dim=1)
|
||||
return x
|
||||
|
||||
@property
|
||||
def particles(self):
|
||||
particles = []
|
||||
particles.extend(self.first_layer.particles)
|
||||
for layer in self.hidden_layers:
|
||||
particles.extend(layer.particles)
|
||||
particles.extend(self.last_layer.particles)
|
||||
return iter(particles)
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
super(SparseNetwork, self).to(*args, **kwargs)
|
||||
self.first_layer = self.first_layer.to(*args, **kwargs)
|
||||
self.last_layer = self.last_layer.to(*args, **kwargs)
|
||||
self.hidden_layers = nn.ModuleList([hidden_layer.to(*args, **kwargs) for hidden_layer in self.hidden_layers])
|
||||
return self
|
||||
|
||||
def combined_self_train(self):
|
||||
import time
|
||||
t = time.time()
|
||||
losses = []
|
||||
for layer in [self.first_layer, *self.hidden_layers, self.last_layer]:
|
||||
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||
output = layer(x)
|
||||
|
||||
losses.append(F.mse_loss(output, target_data))
|
||||
print('Time Taken:', time.time() - t)
|
||||
return torch.hstack(losses).sum(dim=-1, keepdim=True)
|
||||
|
||||
|
||||
def test_sparse_net():
|
||||
utility_transforms = Compose([ Resize((10, 10)), ToTensor(), Flatten(start_dim=0)])
|
||||
@ -150,7 +220,6 @@ def test_sparse_net():
|
||||
data_dim = np.prod(dataset[0][0].shape)
|
||||
metanet = SparseNetwork(data_dim, depth=3, width=5, out=10)
|
||||
batchx, batchy = next(iter(d))
|
||||
batchx.shape, batchy.shape
|
||||
metanet(batchx)
|
||||
|
||||
|
||||
@ -176,6 +245,6 @@ def test_manual_for_loop():
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sparse_layer()
|
||||
test_sparse_net()
|
||||
#for comparison
|
||||
# test_sparse_net()
|
||||
# for comparison
|
||||
test_manual_for_loop()
|
Reference in New Issue
Block a user