sparse network redo

This commit is contained in:
Steffen Illium
2022-02-20 21:21:22 +01:00
parent 52081d176e
commit f25cee5203
7 changed files with 365 additions and 270 deletions

View File

@ -68,7 +68,6 @@ class Net(nn.Module):
for weight_id, weight_value in enumerate(self.state_dict()[layer_name][line_id]):
self.state_dict()[layer_name][line_id][weight_id] = new_weights[i]
i += 1
return self
def __init__(self, i_size: int, h_size: int, o_size: int, name=None, start_time=1) -> None:
@ -100,7 +99,6 @@ class Net(nn.Module):
self._weight_pos_enc_and_mask = None
@property
def _weight_pos_enc(self):
if self._weight_pos_enc_and_mask is None:
@ -127,8 +125,8 @@ class Net(nn.Module):
# Normalize 1,2,3 column of dim 1
last_pos_idx = self.input_size - 4
norm2 = weight_matrix[:, 1:-last_pos_idx].pow(2).sum(keepdim=True, dim=0).sqrt()
weight_matrix[:, 1:-last_pos_idx] = (weight_matrix[:, 1:-last_pos_idx] / norm2) + 1e-8
max_per_col, _ = weight_matrix[:, 1:-last_pos_idx].max(keepdim=True, dim=0)
weight_matrix[:, 1:-last_pos_idx] = (weight_matrix[:, 1:-last_pos_idx] / max_per_col) + 1e-8
# computations
# create a mask where pos is 0 if it is to be replaced
@ -389,6 +387,7 @@ class MetaNet(nn.Module):
def __init__(self, interface=4, depth=3, width=4, out=1, activation=None, residual_skip=True, dropout=0,
weight_interface=5, weight_hidden_size=2, weight_output_size=1,):
super().__init__()
self.residual_skip = residual_skip
self.dropout = dropout
self.activation = activation
self.out = out
@ -398,7 +397,6 @@ class MetaNet(nn.Module):
self.weight_interface = weight_interface
self.weight_hidden_size = weight_hidden_size
self.weight_output_size = weight_output_size
self._meta_layer_first = MetaLayer(name=f'L{0}',
interface=self.interface,
width=self.width,
@ -411,6 +409,7 @@ class MetaNet(nn.Module):
weight_interface=weight_interface,
weight_hidden_size=weight_hidden_size,
weight_output_size=weight_output_size,
) for layer_idx in range(self.depth - 2)]
)
self._meta_layer_last = MetaLayer(name=f'L{len(self._meta_layer_list)}',
@ -441,10 +440,10 @@ class MetaNet(nn.Module):
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
if self.dropout != 0:
tensor = self.dropout_layer(tensor)
if idx % 2 == 1:
if idx % 2 == 1 and self.residual_skip:
x = tensor.clone()
tensor = meta_layer(tensor)
if idx % 2 == 0:
if idx % 2 == 0 and self.residual_skip:
tensor = tensor + x
if self.dropout != 0:
x = self.dropout_layer(x)