sparse network redo
This commit is contained in:
@ -1,4 +1,5 @@
|
||||
import pickle
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
import sys
|
||||
@ -17,7 +18,7 @@ from torchvision.datasets import MNIST
|
||||
from torchvision.transforms import ToTensor, Compose, Resize
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
# noinspection DuplicatedCode
|
||||
if platform.node() == 'CarbonX':
|
||||
debug = True
|
||||
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
|
||||
@ -37,14 +38,15 @@ else:
|
||||
DIR = None
|
||||
pass
|
||||
|
||||
from network import MetaNet, FixTypes
|
||||
from network import MetaNet, FixTypes as ft
|
||||
from sparse_net import SparseNetwork
|
||||
from functionalities_test import test_for_fixpoints
|
||||
|
||||
WORKER = 10 if not debug else 2
|
||||
debug = False
|
||||
BATCHSIZE = 500 if not debug else 50
|
||||
EPOCH = 200
|
||||
VALIDATION_FRQ = 5 if not debug else 1
|
||||
VALIDATION_FRQ = 3 if not debug else 1
|
||||
SELF_TRAIN_FRQ = 1 if not debug else 1
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
@ -139,7 +141,7 @@ def plot_training_particle_types(path_to_dataframe):
|
||||
df = pd.read_csv(path_to_dataframe, index_col=False)
|
||||
# Set up figure
|
||||
fig, ax = plt.subplots() # initializes figure and plots
|
||||
data = df[df['Metric'].isin(FixTypes.all_types())]
|
||||
data = df.loc[df['Metric'].isin(ft.all_types())]
|
||||
fix_types = data['Metric'].unique()
|
||||
data = data.pivot(index='Epoch', columns='Metric', values='Score').reset_index().fillna(0)
|
||||
_ = plt.stackplot(data['Epoch'], *[data[fixtype] for fixtype in fix_types], labels=fix_types.tolist())
|
||||
@ -189,196 +191,253 @@ def plot_training_result(path_to_dataframe):
|
||||
plt.savefig(Path(path_to_dataframe.parent / 'training_lineplot.png'), dpi=300)
|
||||
|
||||
|
||||
def plot_network_connectivity_by_fixtype(path_to_trained_model):
|
||||
m = torch.load(path_to_trained_model, map_location=torch.device('cpu'))
|
||||
# noinspection PyProtectedMember
|
||||
particles = [y for x in m._meta_layer_list for y in x.particles]
|
||||
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name'])
|
||||
|
||||
for prtcl in particles:
|
||||
l, c, w = [float(x) for x in re.sub("[^0-9|_]", "", prtcl.name).split('_')]
|
||||
df.loc[df.shape[0]] = (prtcl.is_fixpoint, l-1, w, prtcl.name)
|
||||
df.loc[df.shape[0]] = (prtcl.is_fixpoint, l, c, prtcl.name)
|
||||
for layer in list(df['layer'].unique()):
|
||||
# Rescale
|
||||
divisor = df.loc[(df['layer'] == layer), 'neuron'].max()
|
||||
df.loc[(df['layer'] == layer), 'neuron'] /= divisor
|
||||
|
||||
print('gathered')
|
||||
for n, fixtype in enumerate([ft.other_func, ft.identity_func]):
|
||||
plt.clf()
|
||||
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
||||
legend=False, estimator=None,
|
||||
palette=[sns.color_palette()[n]] * (df[df['type'] == fixtype].shape[0]//2), lw=1)
|
||||
ax.set_title(fixtype)
|
||||
plt.show()
|
||||
print('plottet')
|
||||
|
||||
|
||||
def run_particle_dropout_test(run_path):
|
||||
diff_store_path = run_path / 'diff_store.csv'
|
||||
prtcl_dict = defaultdict(lambda: 0)
|
||||
_ = test_for_fixpoints(prtcl_dict, list(latest_model.particles))
|
||||
tqdm.write(str(dict(prtcl_dict)))
|
||||
|
||||
acc_pre = validate(model_path, ratio=1).item()
|
||||
diff_df = pd.DataFrame(columns=['Particle Type', 'Accuracy', 'Diff'])
|
||||
for fixpoint_type in ft.all_types():
|
||||
new_model = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero(fixpoint_type)
|
||||
if [x for x in new_model.particles if x.is_fixpoint == fixpoint_type]:
|
||||
new_ckpt = set_checkpoint(new_model, model_path.parent, fixpoint_type, final_model=True)
|
||||
acc_post = validate(new_ckpt, ratio=1).item()
|
||||
acc_diff = abs(acc_post - acc_pre)
|
||||
tqdm.write(f'Zero_ident diff = {acc_diff}')
|
||||
diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff)
|
||||
|
||||
diff_df.to_csv(diff_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
return diff_store_path
|
||||
|
||||
|
||||
def plot_dropout_stacked_barplot(path_to_diff_df):
|
||||
diff_df = pd.read_csv(path_to_diff_df)
|
||||
particle_dict = defaultdict(lambda: 0)
|
||||
_ = test_for_fixpoints(particle_dict, list(latest_model.particles))
|
||||
tqdm.write(str(dict(particle_dict)))
|
||||
plt.clf()
|
||||
fig, ax = plt.subplots(ncols=2)
|
||||
colors = sns.color_palette()[:diff_df.shape[0]]
|
||||
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0])
|
||||
# noinspection PyUnboundLocalVariable
|
||||
for idx, patch in enumerate(barplot.patches):
|
||||
if idx != 0:
|
||||
# we recenter the bar
|
||||
patch.set_x(patch.get_x() + idx * 0.035)
|
||||
|
||||
ax[0].set_title('Accuracy after particle dropout')
|
||||
ax[0].set_xlabel('Accuracy')
|
||||
|
||||
ax[1].pie(particle_dict.values(), labels=particle_dict.keys(), colors=colors, )
|
||||
ax[1].set_title('Particle Count for ')
|
||||
|
||||
plt.tight_layout()
|
||||
if debug:
|
||||
plt.show()
|
||||
else:
|
||||
plt.savefig(Path(path_to_diff_df.parent / 'dropout_stacked_barplot.png'), dpi=300)
|
||||
|
||||
|
||||
def run_particle_dropout_and_plot(run_path):
|
||||
diff_store_path = run_particle_dropout_test(run_path)
|
||||
plot_dropout_stacked_barplot(diff_store_path)
|
||||
|
||||
|
||||
def flat_for_store(parameters):
|
||||
return (x.item() for y in parameters for x in y.detach().flatten())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
use_sparse_implementation = True
|
||||
self_train = True
|
||||
training = False
|
||||
plotting = True
|
||||
particle_analysis = True
|
||||
as_sparse_network_test = True
|
||||
training = True
|
||||
train_to_id_first = False
|
||||
self_train_alpha = 100
|
||||
train_to_task_first = False
|
||||
train_to_task_first_sequential = True
|
||||
|
||||
tsk_threshold = 0.855
|
||||
self_train_alpha = 1
|
||||
batch_train_beta = 1
|
||||
weight_hidden_size = 4
|
||||
weight_hidden_size = 3
|
||||
residual_skip = True
|
||||
dropout = 0
|
||||
n_seeds = 2
|
||||
|
||||
data_path = Path('data')
|
||||
data_path.mkdir(exist_ok=True, parents=True)
|
||||
assert not (train_to_task_first and train_to_id_first)
|
||||
|
||||
st_str = f'{"" if self_train else "no_"}st'
|
||||
a_str = f'_alpha_{self_train_alpha}' if self_train_alpha != 1 else ''
|
||||
res_str = f'{"" if residual_skip else "_no"}_res'
|
||||
dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||
res_str = f'{"" if residual_skip else "_no_res"}'
|
||||
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
||||
run_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{a_str}{res_str}{dr_str}{id_str}'
|
||||
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first else ""}'
|
||||
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{a_str}{res_str}{id_str}{tsk_str}'
|
||||
|
||||
model_path = run_path / '0000_trained_model.zip'
|
||||
df_store_path = run_path / 'train_store.csv'
|
||||
weight_store_path = run_path / 'weight_store.csv'
|
||||
srnn_parameters = dict()
|
||||
if use_sparse_implementation:
|
||||
metanet_class = SparseNetwork
|
||||
else:
|
||||
metanet_class = MetaNet
|
||||
|
||||
if training:
|
||||
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
||||
try:
|
||||
dataset = MNIST(str(data_path), transform=utility_transforms)
|
||||
except RuntimeError:
|
||||
dataset = MNIST(str(data_path), transform=utility_transforms, download=True)
|
||||
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||
for seed in range(n_seeds):
|
||||
seed_path = exp_path / str(seed)
|
||||
|
||||
interface = np.prod(dataset[0][0].shape)
|
||||
metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip, dropout=dropout,
|
||||
weight_hidden_size=weight_hidden_size,
|
||||
).to(DEVICE)
|
||||
meta_weight_count = sum(p.numel() for p in next(metanet.particles).parameters())
|
||||
model_path = seed_path / '0000_trained_model.zip'
|
||||
df_store_path = seed_path / 'train_store.csv'
|
||||
weight_store_path = seed_path / 'weight_store.csv'
|
||||
srnn_parameters = dict()
|
||||
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(metanet.parameters(), lr=0.008, momentum=0.9)
|
||||
if training:
|
||||
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
||||
try:
|
||||
dataset = MNIST(str(data_path), transform=utility_transforms)
|
||||
except RuntimeError:
|
||||
dataset = MNIST(str(data_path), transform=utility_transforms, download=True)
|
||||
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', meta_weight_count)
|
||||
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
||||
metanet = metanet.train()
|
||||
if is_validation_epoch:
|
||||
metric = torchmetrics.Accuracy()
|
||||
else:
|
||||
metric = None
|
||||
init_st = train_to_id_first and all(x.is_fixpoint == FixTypes.identity_func for x in metanet.particles)
|
||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
||||
if (self_train and is_self_train_epoch) or init_st:
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
self_train_loss = metanet.combined_self_train() * self_train_alpha
|
||||
self_train_loss.backward()
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
step_log = dict(Epoch=epoch, Batch=batch, Metric='Self Train Loss', Score=self_train_loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if train_to_id_first <= epoch:
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||
y = metanet(batch_x)
|
||||
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
||||
loss = loss_fn(y, batch_y.to(torch.long)) * batch_train_beta
|
||||
loss.backward()
|
||||
interface = np.prod(dataset[0][0].shape)
|
||||
metanet = metanet_class(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
|
||||
weight_hidden_size=weight_hidden_size,).to(DEVICE)
|
||||
meta_weight_count = sum(p.numel() for p in next(metanet.particles).parameters())
|
||||
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(metanet.parameters(), lr=0.008, momentum=0.9)
|
||||
|
||||
step_log = dict(Epoch=epoch, Batch=batch,
|
||||
Metric='Task Loss', Score=loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if is_validation_epoch:
|
||||
metric(y.cpu(), batch_y.cpu())
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', meta_weight_count)
|
||||
init_tsk = train_to_task_first
|
||||
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
||||
metanet = metanet.train()
|
||||
if is_validation_epoch:
|
||||
metric = torchmetrics.Accuracy()
|
||||
else:
|
||||
metric = None
|
||||
init_st = train_to_id_first and not all(x.is_fixpoint == ft.identity_func for x in metanet.particles)
|
||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
||||
if self_train and not init_tsk and (is_self_train_epoch or init_st):
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
self_train_loss = metanet.combined_self_train() * self_train_alpha
|
||||
self_train_loss.backward()
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
step_log = dict(Epoch=epoch, Batch=batch,
|
||||
Metric='Self Train Loss', Score=self_train_loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if not init_st:
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||
y_pred = metanet(batch_x)
|
||||
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
||||
loss = loss_fn(y_pred, batch_y.to(torch.long)) * batch_train_beta
|
||||
loss.backward()
|
||||
|
||||
if batch >= 3 and debug:
|
||||
break
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
|
||||
if is_validation_epoch:
|
||||
metanet = metanet.eval()
|
||||
if train_to_id_first <= epoch:
|
||||
step_log = dict(Epoch=epoch, Batch=batch,
|
||||
Metric='Task Loss', Score=loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if is_validation_epoch:
|
||||
metric(y_pred.cpu(), batch_y.cpu())
|
||||
|
||||
if batch >= 3 and debug:
|
||||
break
|
||||
|
||||
if is_validation_epoch:
|
||||
metanet = metanet.eval()
|
||||
if train_to_id_first <= epoch:
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Train Accuracy', Score=metric.compute().item())
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
|
||||
accuracy = checkpoint_and_validate(metanet, seed_path, epoch).item()
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Train Accuracy', Score=metric.compute().item())
|
||||
Metric='Test Accuracy', Score=accuracy)
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
if init_tsk or (train_to_task_first and train_to_task_first_sequential):
|
||||
init_tsk = accuracy <= tsk_threshold
|
||||
if init_st or is_validation_epoch:
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||
for key, value in dict(counter_dict).items():
|
||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if init_st or is_validation_epoch:
|
||||
for particle in metanet.particles:
|
||||
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', meta_weight_count)
|
||||
|
||||
accuracy = checkpoint_and_validate(metanet, run_path, epoch)
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy.item())
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
if particle_analysis and (init_st or is_validation_epoch):
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||
for key, value in dict(counter_dict).items():
|
||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if init_st or is_validation_epoch:
|
||||
for particle in metanet.particles:
|
||||
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', meta_weight_count)
|
||||
metanet.eval()
|
||||
|
||||
metanet.eval()
|
||||
if particle_analysis:
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||
for key, value in dict(counter_dict).items():
|
||||
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True)
|
||||
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy.item())
|
||||
for particle in metanet.particles:
|
||||
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
accuracy = checkpoint_and_validate(metanet, seed_path, EPOCH, final_model=True)
|
||||
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy.item())
|
||||
for particle in metanet.particles:
|
||||
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||
|
||||
if plotting:
|
||||
plot_training_result(df_store_path)
|
||||
if particle_analysis:
|
||||
plot_training_particle_types(df_store_path)
|
||||
plot_training_particle_types(df_store_path)
|
||||
|
||||
if particle_analysis:
|
||||
try:
|
||||
model_path = next(run_path.glob(f'*e{EPOCH}.tp'))
|
||||
model_path = next(seed_path.glob(f'*e{EPOCH}.tp'))
|
||||
except StopIteration:
|
||||
print('Model pattern did not trigger.')
|
||||
print(f'Search path was: {run_path}:')
|
||||
print(f'Found Models are: {list(run_path.rglob(".tp"))}')
|
||||
print(f'Search path was: {seed_path}:')
|
||||
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
|
||||
exit(1)
|
||||
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
_ = test_for_fixpoints(counter_dict, list(latest_model.particles))
|
||||
tqdm.write(str(dict(counter_dict)))
|
||||
|
||||
if as_sparse_network_test:
|
||||
acc_pre = validate(model_path, ratio=1).item()
|
||||
diff_df = pd.DataFrame(columns=['Particle Type', 'Accuracy', 'Diff'])
|
||||
for fixpoint_type in FixTypes.all_types():
|
||||
new_model = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero(fixpoint_type)
|
||||
if [x for x in new_model.particles if x.is_fixpoint == fixpoint_type]:
|
||||
new_ckpt = set_checkpoint(new_model, model_path.parent, fixpoint_type, final_model=True)
|
||||
acc_post = validate(new_ckpt, ratio=1).item()
|
||||
acc_diff = abs(acc_post-acc_pre)
|
||||
tqdm.write(f'Zero_ident diff = {acc_diff}')
|
||||
diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff)
|
||||
run_particle_dropout_and_plot(seed_path)
|
||||
plot_network_connectivity_by_fixtype(model_path)
|
||||
|
||||
if plotting:
|
||||
plt.clf()
|
||||
fig, ax = plt.subplots(ncols=2)
|
||||
labels = ['Full Network', 'Sparse, No Identity', 'Sparse, No Other']
|
||||
colors = sns.color_palette()[:diff_df.shape[0]] if diff_df.shape[0] >= 2 else sns.color_palette()[0]
|
||||
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0])
|
||||
# noinspection PyUnboundLocalVariable
|
||||
for idx, patch in enumerate(barplot.patches):
|
||||
if idx != 0:
|
||||
# we recenter the bar
|
||||
patch.set_x(patch.get_x() + idx * 0.035)
|
||||
|
||||
ax[0].set_title('Accuracy after particle dropout')
|
||||
ax[0].set_xlabel('Accuracy')
|
||||
# ax[0].legend()
|
||||
|
||||
ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=colors, )
|
||||
ax[1].set_title('Particle Count for ')
|
||||
# ax[1].set_xlabel('')
|
||||
|
||||
plt.tight_layout()
|
||||
if debug:
|
||||
plt.show()
|
||||
else:
|
||||
plt.savefig(Path(run_path / 'dropout_stacked_barplot.png'), dpi=300)
|
||||
if n_seeds >= 2:
|
||||
pass
|
||||
|
Reference in New Issue
Block a user