Dense Code

This commit is contained in:
Si11ium
2019-03-01 20:14:12 +01:00
parent cfbf341814
commit ee3ac7d41a
2 changed files with 868 additions and 24 deletions

832
code/fixpoint-2.ipynb Normal file

File diff suppressed because one or more lines are too long

View File

@ -4,10 +4,11 @@ from keras.layers import SimpleRNN, Dense
from keras.layers import Input, TimeDistributed
from tqdm import tqdm
import itertools
from typing import Union
import numpy as np
class Network(object):
def __init__(self, features, cells, layers, bias=False, recurrent=False):
self.features = features
@ -31,16 +32,17 @@ class Network(object):
self.parameters = np.sum([p_layer_1, p_layer_n, p_layer_out])
# Build network
cell = SimpleRNN if recurrent else Dense
self.inputs, x = Input(shape=(self.parameters // self.features, self.features,)), None
self.inputs, x = Input(shape=(self.parameters // self.features,
self.features) if recurrent else (self.features,)), None
for layer in range(self.num_layer):
if recurrent:
x = SimpleRNN(cells, activation=None, use_bias=False,
x = SimpleRNN(self.cells, activation=None, use_bias=False,
return_sequences=True)(self.inputs if layer == 0 else x)
else:
x = Dense(cells, activation=None, use_bias=False,
x = Dense(self.cells, activation=None, use_bias=False,
)(self.inputs if layer == 0 else x)
self.outputs = Dense(self.features, activation=None, use_bias=False)(x)
self.outputs = Dense(self.features if recurrent else 1, activation=None, use_bias=False)(x)
print('Network initialized, i haz {p} params @:{e}Features: {f}{e}Cells: {c}{e}Layers: {l}'.format(
p=self.parameters, l=self.num_layer, c=self.cells, f=self.features, e='\n{}'.format(' ' * 5))
)
@ -65,10 +67,8 @@ class _BaseNetwork(Model):
flat = np.asarray(np.concatenate([x.flatten() for x in weights]))
return flat
def step(self):
flat = self.get_weights_flat()
x = np.reshape(flat, (1, -1, self.features))
return self.predict(x).flatten()
def step(self, x):
pass
def step_other(self, other: Union[Sequential, Model]) -> bool:
pass
@ -98,13 +98,18 @@ class RecurrentNetwork(_BaseNetwork):
self.parameters = network.parameters
assert self.parameters == self.get_parameter_count()
def step(self, x):
shaped = np.reshape(x, (1, -1, self.features))
return self.predict(shaped).flatten()
def fit(self, epochs=500, **kwargs):
losses = []
with tqdm(total=epochs, ascii=True,
desc='Type: {t}'. format(t=self.__class__.__name__),
postfix=["Loss", dict(value=0)]) as bar:
for _ in range(epochs):
y = self.step()
x = self.get_weights_flat()
y = self.step(x)
weights = self.get_weights()
global_idx = 0
for idx, weight_matrix in enumerate(weights):
@ -125,7 +130,14 @@ class FeedForwardNetwork(_BaseNetwork):
self.features = network.features
self.parameters = network.parameters
self.num_layer = network.num_layer
assert self.parameters == self.get_parameter_count()
self.num_cells = network.cells
# assert self.parameters == self.get_parameter_count()
def step(self, x):
return self.predict(x)
def step_other(self, x):
return self.predict(x)
def fit(self, epochs=500, **kwargs):
losses = []
@ -133,30 +145,30 @@ class FeedForwardNetwork(_BaseNetwork):
desc='Type: {t} @ Epoch:'. format(t=self.__class__.__name__),
postfix=["Loss", dict(value=0)]) as bar:
for _ in range(epochs):
y = self.step()
all_weights = self.get_weights_flat()
cell_idx = np.apply_along_axis(lambda x: x/self.num_cells, 0, np.arange(int(self.get_parameter_count())))
xc = np.concatenate((all_weights[..., None], cell_idx[..., None]), axis=1)
y = self.step(xc)
weights = self.get_weights()
# This is where i have to apply the aggregator
global_idx = 0
# This is where the weights are assigned to the new ones
for idx, weight_matrix in enumerate(weights):
if self.num_layer == 1:
# In case of dense layers with a single layer, the RNN procedure can be applied
flattened = weight_matrix.flatten()
else:
# In case of multiple layers, a function aggregator has to be applied first.
# possible aggregators are: Mean, Transformation, Spektral analysis
pass
new_weights = y[global_idx:global_idx + flattened.shape[0]]
# UPDATE THE WEIGHTS
flattened = weight_matrix.flatten()
new_weights = y[global_idx:global_idx + flattened.shape[0], 0]
weights[idx] = np.reshape(new_weights, weight_matrix.shape)
global_idx += flattened.shape[0]
losses.append(self.mean_sqrd_error(y.flatten(), self.get_weights_flat()))
losses.append(self.mean_sqrd_error(y[:, 0].flatten(), self.get_weights_flat()))
self.set_weights(weights)
bar.postfix[1]["value"] = losses[-1]
bar.update()
return losses
if __name__ == '__main__':
features, cells, layers = 2, 2, 2
use_recurrent = False