Robustness test with synthetic and natural fixpoints. Should now work as
intended. Noise gets added to weights instead of input.
This commit is contained in:
177
journal_robustness.py
Normal file
177
journal_robustness.py
Normal file
@ -0,0 +1,177 @@
|
||||
import pickle
|
||||
import torch
|
||||
import random
|
||||
import copy
|
||||
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
from tabulate import tabulate
|
||||
from sklearn.metrics import mean_absolute_error as MAE
|
||||
from sklearn.metrics import mean_squared_error as MSE
|
||||
|
||||
from journal_basins import mean_invariate_manhattan_distance as MIM
|
||||
from functionalities_test import is_identity_function, is_zero_fixpoint, test_for_fixpoints, is_divergent
|
||||
from network import Net
|
||||
from visualization import plot_loss, bar_chart_fixpoints
|
||||
|
||||
|
||||
def prng():
|
||||
return random.random()
|
||||
|
||||
def generate_fixpoint_weights():
|
||||
return torch.tensor([ [1.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0],
|
||||
[1.0], [0.0], [0.0], [0.0],
|
||||
[1.0], [0.0]
|
||||
], dtype=torch.float32)
|
||||
|
||||
|
||||
class RobustnessComparisonExperiment:
|
||||
|
||||
@staticmethod
|
||||
def apply_noise(network, noise: int):
|
||||
""" Changing the weights of a network to values + noise """
|
||||
|
||||
for layer_id, layer_name in enumerate(network.state_dict()):
|
||||
for line_id, line_values in enumerate(network.state_dict()[layer_name]):
|
||||
for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]):
|
||||
#network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
|
||||
if prng() < 0.5:
|
||||
network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
|
||||
else:
|
||||
network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise
|
||||
|
||||
return network
|
||||
|
||||
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
||||
epochs, st_steps, synthetic, directory) -> None:
|
||||
self.population_size = population_size
|
||||
self.log_step_size = log_step_size
|
||||
self.net_input_size = net_input_size
|
||||
self.net_hidden_size = net_hidden_size
|
||||
self.net_out_size = net_out_size
|
||||
self.net_learning_rate = net_learning_rate
|
||||
self.epochs = epochs
|
||||
self.ST_steps = st_steps
|
||||
self.loss_history = []
|
||||
self.nets = []
|
||||
self.synthetic = synthetic
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
self.directory = Path(directory)
|
||||
self.directory.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
self.id_functions = []
|
||||
self.populate_environment()
|
||||
self.count_fixpoints()
|
||||
self.data = self.test_robustness()
|
||||
|
||||
self.save()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating experiment %s" % i)
|
||||
|
||||
if self.synthetic:
|
||||
''' Either use perfect / hand-constructed fixpoint ... '''
|
||||
net_name = f"ST_net_{str(i)}_synthetic"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
net.apply_weights(generate_fixpoint_weights())
|
||||
|
||||
else:
|
||||
''' .. or use natural approach to train fixpoints from random initialisation. '''
|
||||
net_name = f"ST_net_{str(i)}"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
for _ in range(self.epochs):
|
||||
for _ in range(self.ST_steps):
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
|
||||
self.nets.append(net)
|
||||
|
||||
|
||||
def test_robustness(self, print_it=True):
|
||||
data = [[0 for _ in range(10)] for _ in range(len(self.id_functions))]
|
||||
avg_loss_per_application = [[0 for _ in range(10)] for _ in range(len(self.id_functions))]
|
||||
noise_range = range(10)
|
||||
row_headers = []
|
||||
|
||||
for i, fixpoint in enumerate(self.id_functions):
|
||||
row_headers.append(fixpoint.name)
|
||||
for noise_level in noise_range:
|
||||
application_losses = []
|
||||
|
||||
clone = Net(fixpoint.input_size, fixpoint.hidden_size, fixpoint.out_size,
|
||||
f"{fixpoint.name}_clone_noise10e-{noise_level}")
|
||||
clone.load_state_dict(copy.deepcopy(fixpoint.state_dict()))
|
||||
rand_noise = prng() * pow(10, -noise_level)
|
||||
clone = self.apply_noise(clone, rand_noise)
|
||||
|
||||
while not is_zero_fixpoint(clone) and not is_divergent(clone):
|
||||
# Todo: what kind of comparison between application? -> before
|
||||
clone.self_application(1, self.log_step_size)
|
||||
data[i][noise_level] += 1
|
||||
# -> after
|
||||
|
||||
if print_it:
|
||||
print(f"Number appplications steps: ")
|
||||
col_headers = [str(f"10e-{d}") for d in noise_range]
|
||||
print(tabulate(data, showindex=row_headers, headers=col_headers, tablefmt='orgtbl'))
|
||||
|
||||
# other tables here
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def count_fixpoints(self):
|
||||
exp_details = f"ST steps: {self.ST_steps}"
|
||||
self.id_functions = test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
|
||||
def visualize_loss(self):
|
||||
for i in range(len(self.nets)):
|
||||
net_loss_history = self.nets[i].loss_history
|
||||
self.loss_history.append(net_loss_history)
|
||||
plot_loss(self.loss_history, self.directory)
|
||||
|
||||
|
||||
def save(self):
|
||||
pickle.dump(self, open(f"{self.directory}/experiment_pickle.p", "wb"))
|
||||
print(f"\nSaved experiment to {self.directory}.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
NET_INPUT_SIZE = 4
|
||||
NET_OUT_SIZE = 1
|
||||
|
||||
ST_steps = 1000
|
||||
ST_epochs = 5
|
||||
ST_log_step_size = 10
|
||||
ST_population_size = 3
|
||||
ST_net_hidden_size = 2
|
||||
ST_net_learning_rate = 0.04
|
||||
ST_name_hash = random.getrandbits(32)
|
||||
ST_synthetic = True
|
||||
|
||||
print(f"Running the robustness comparison experiment:")
|
||||
RobustnessComparisonExperiment(
|
||||
population_size=ST_population_size,
|
||||
log_step_size=ST_log_step_size,
|
||||
net_input_size=NET_INPUT_SIZE,
|
||||
net_hidden_size=ST_net_hidden_size,
|
||||
net_out_size=NET_OUT_SIZE,
|
||||
net_learning_rate=ST_net_learning_rate,
|
||||
epochs=ST_epochs,
|
||||
st_steps=ST_steps,
|
||||
synthetic=ST_synthetic,
|
||||
directory=Path('output') / 'robustness' / f'{ST_name_hash}'
|
||||
)
|
Reference in New Issue
Block a user