uploaded my code (not yet 100% finished)
This commit is contained in:
103
functionalities_test.py
Normal file
103
functionalities_test.py
Normal file
@ -0,0 +1,103 @@
|
||||
import copy
|
||||
from typing import Dict, List
|
||||
import numpy as np
|
||||
from torch import Tensor
|
||||
from network import Net
|
||||
|
||||
|
||||
def overall_fixpoint_test(network: Net, epsilon: float, input_data) -> bool:
|
||||
predicted_values = network(input_data)
|
||||
|
||||
check_smaller_epsilon = all(epsilon > predicted_values)
|
||||
check_greater_epsilon = all(-epsilon < predicted_values)
|
||||
|
||||
if check_smaller_epsilon and check_greater_epsilon:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def is_divergent(network: Net) -> bool:
|
||||
for i in network.input_weight_matrix():
|
||||
weight_value = i[0].item()
|
||||
|
||||
if np.isnan(weight_value) or np.isinf(weight_value):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def is_identity_function(network: Net, input_data: Tensor, target_data: Tensor, epsilon=pow(10, -5)) -> bool:
|
||||
predicted_values = network(input_data)
|
||||
|
||||
return np.allclose(target_data.detach().numpy(), predicted_values.detach().numpy(), 0, epsilon)
|
||||
|
||||
|
||||
def is_zero_fixpoint(network: Net, input_data: Tensor, epsilon=pow(10, -5)) -> bool:
|
||||
result = overall_fixpoint_test(network, epsilon, input_data)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def is_secondary_fixpoint(network: Net, input_data: Tensor, epsilon: float) -> bool:
|
||||
""" Secondary fixpoint check is done like this: compare first INPUT with second OUTPUT.
|
||||
If they are within the boundaries, then is secondary fixpoint. """
|
||||
|
||||
# Calculating first output
|
||||
first_output = network(input_data)
|
||||
|
||||
# Getting the second output by initializing a new net with the weights of the original net.
|
||||
net_copy = copy.deepcopy(network)
|
||||
net_copy.apply_weights(net_copy, first_output)
|
||||
input_data_2 = net_copy.input_weight_matrix()
|
||||
|
||||
# Calculating second output
|
||||
second_output = network(input_data_2)
|
||||
|
||||
check_smaller_epsilon = all(epsilon > second_output)
|
||||
check_greater_epsilon = all(-epsilon < second_output)
|
||||
|
||||
if check_smaller_epsilon and check_greater_epsilon:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def is_weak_fixpoint(network: Net, input_data: Tensor, epsilon: float) -> bool:
|
||||
result = overall_fixpoint_test(network, epsilon, input_data)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=[]):
|
||||
zero_epsilon = pow(10, -5)
|
||||
epsilon = pow(10, -3)
|
||||
|
||||
for i in range(len(nets)):
|
||||
net = nets[i]
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
|
||||
if is_divergent(nets[i]):
|
||||
fixpoint_counter["divergent"] += 1
|
||||
nets[i].is_fixpoint = "divergent"
|
||||
elif is_identity_function(nets[i], input_data, target_data, zero_epsilon):
|
||||
fixpoint_counter["identity_func"] += 1
|
||||
nets[i].is_fixpoint = "identity_func"
|
||||
id_functions.append(nets[i])
|
||||
elif is_zero_fixpoint(nets[i], input_data, zero_epsilon):
|
||||
fixpoint_counter["fix_zero"] += 1
|
||||
nets[i].is_fixpoint = "fix_zero"
|
||||
elif is_weak_fixpoint(nets[i], input_data, epsilon):
|
||||
fixpoint_counter["fix_weak"] += 1
|
||||
nets[i].is_fixpoint = "fix_weak"
|
||||
elif is_secondary_fixpoint(nets[i], input_data, zero_epsilon):
|
||||
fixpoint_counter["fix_sec"] += 1
|
||||
nets[i].is_fixpoint = "fix_sec"
|
||||
else:
|
||||
fixpoint_counter["other_func"] += 1
|
||||
nets[i].is_fixpoint = "other_func"
|
||||
|
||||
|
||||
def changing_rate(x_new, x_old):
|
||||
return x_new - x_old
|
Reference in New Issue
Block a user