Box and stuff

This commit is contained in:
Si11ium
2019-03-13 15:30:54 +01:00
parent 5c7a646d69
commit d4f0024f4b
34 changed files with 413 additions and 211 deletions

View File

@@ -3,6 +3,9 @@ import os
from typing import Tuple
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from util import *
from experiment import *
from network import *
@@ -10,10 +13,6 @@ from network import *
import keras.backend
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
def generate_counters():
"""
Initial build of the counter dict, to store counts.
@@ -51,46 +50,52 @@ def count(counters, net, notable_nets=[]):
counters['other'] += 1
return counters, notable_nets
if __name__ == '__main__':
with Experiment('mixed-self-fixpoints') as exp:
exp.trials = 20
exp.selfattacks = 4
exp.trains_per_selfattack_values = [100 * i for i in range(11)]
exp.epsilon = 1e-4
net_generators = []
for activation in ['linear', 'sigmoid', 'relu']:
for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
with Experiment('mixed-self-fixpoints') as exp:
exp.trials = 20
exp.selfattacks = 4
exp.trains_per_selfattack_values = [100 * i for i in range(11)]
exp.epsilon = 1e-4
net_generators = []
for activation in ['linear']: # , 'sigmoid', 'relu']:
for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
all_names = []
all_data = []
for net_generator_id, net_generator in enumerate(net_generators):
xs = []
ys = []
for trains_per_selfattack in exp.trains_per_selfattack_values:
counters = generate_counters()
notable_nets = []
for _ in tqdm(range(exp.trials)):
net = TrainingNeuralNetworkDecorator(net_generator()).with_params(epsilon=exp.epsilon)
name = str(net.net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias=" + str(net.get_keras_params().get('use_bias'))
for selfattack_id in range(exp.selfattacks):
net.self_attack()
for train_id in range(trains_per_selfattack):
loss = net.compiled().train(epoch=selfattack_id*trains_per_selfattack+train_id)
if net.is_diverged() or net.is_fixpoint():
break
count(counters, net, notable_nets)
keras.backend.clear_session()
xs += [trains_per_selfattack]
ys += [float(counters['fix_zero'] + counters['fix_other']) / float(exp.trials)]
all_names += [name]
all_data += [{'xs':xs, 'ys':ys}] #xs: how many trains per self-attack from exp.trains_per_selfattack_values, ys: average amount of fixpoints found
all_names = []
all_data = []
exp.save(all_names=all_names)
exp.save(all_data=all_data)
for exp_id, name in enumerate(all_names):
exp.log(all_names[exp_id])
exp.log(all_data[exp_id])
exp.log('\n')
for net_generator_id, net_generator in enumerate(net_generators):
xs = []
ys = []
for trains_per_selfattack in exp.trains_per_selfattack_values:
counters = generate_counters()
notable_nets = []
for _ in tqdm(range(exp.trials)):
net = ParticleDecorator(net_generator())
net = TrainingNeuralNetworkDecorator(net).with_params(epsilon=exp.epsilon)
name = str(net.net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias=" + str(net.get_keras_params().get('use_bias'))
for selfattack_id in range(exp.selfattacks):
net.self_attack()
for train_id in range(trains_per_selfattack):
loss = net.compiled().train(epoch=selfattack_id*trains_per_selfattack+train_id)
if net.is_diverged() or net.is_fixpoint():
break
count(counters, net, notable_nets)
keras.backend.clear_session()
xs += [trains_per_selfattack]
ys += [float(counters['fix_zero'] + counters['fix_other']) / float(exp.trials)]
all_names += [name]
# xs: how many trains per self-attack from exp.trains_per_selfattack_values
# ys: average amount of fixpoints found
all_data += [{'xs': xs, 'ys': ys}]
exp.save(all_names=all_names)
exp.save(all_data=all_data)
for exp_id, name in enumerate(all_names):
exp.log(all_names[exp_id])
exp.log(all_data[exp_id])
exp.log('\n')