save states for particles in soup (another decorator pattern)

This commit is contained in:
Thomas Gabor 2019-03-06 04:26:23 +01:00
parent 2966b41baf
commit c564c02b31

View File

@ -17,36 +17,61 @@ class Soup:
self.size = size
self.generator = generator
self.particles = []
self.params = dict(meeting_rate=0.1, train_other_rate=0.1, train=0)
self.historical_particles = {}
self.params = dict(attacking_rate=0.1, train_other_rate=0.1, train=0)
self.params.update(kwargs)
self.time = 0
def with_params(self, **kwargs):
self.params.update(kwargs)
return self
def generate_particle(self):
new_particle = ParticleDecorator(self.generator())
self.historical_particles[new_particle.get_uid()] = new_particle
return new_particle
def get_particle(self, uid, otherwise=None):
return self.historical_particles.get(uid, otherwise)
def seed(self):
self.particles = []
for _ in range(self.size):
self.particles += [self.generator()]
self.particles += [self.generate_particle()]
return self
def evolve(self, iterations=1):
for _ in range(iterations):
self.time += 1
for particle_id, particle in enumerate(self.particles):
if prng() < self.params.get('meeting_rate'):
description = {'time': self.time}
if prng() < self.params.get('attacking_rate'):
other_particle_id = int(prng() * len(self.particles))
other_particle = self.particles[other_particle_id]
particle.attack(other_particle)
description['attacking'] = other_particle.get_uid()
if prng() < self.params.get('train_other_rate'):
other_particle_id = int(prng() * len(self.particles))
other_particle = self.particles[other_particle_id]
particle.train_other(other_particle)
description['training'] = other_particle.get_uid()
for _ in range(self.params.get('train', 0)):
particle.compiled().train()
loss = particle.compiled().train()
description['fitted'] = self.params.get('train', 0)
description['loss'] = loss
if self.params.get('remove_divergent') and particle.is_diverged():
self.particles[particle_id] = self.generator()
new_particle = self.generate_particle()
self.particles[particle_id] = new_particle
description['died'] = True
description['cause'] = 'divergent'
description['substitute'] = new_particle.get_uid()
if self.params.get('remove_zero') and particle.is_zero():
self.particles[particle_id] = self.generator()
new_particle = self.generate_particle()
self.particles[particle_id] = new_particle
description['died'] = True
description['cause'] = 'zero'
description['substitute'] = new_particle.get_uid()
particle.save_state(**description)
def count(self):
counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
@ -69,11 +94,42 @@ class Soup:
particle.print_weights()
print(particle.is_fixpoint())
class ParticleDecorator:
class LearningSoup(Soup):
next_uid = 0
def __init__(self, net):
self.uid = self.__class__.next_uid
self.__class__.next_uid += 1
self.net = net
self.states = []
def __getattr__(self, name):
return getattr(self.net, name)
def get_uid(self):
return self.uid
def make_state(self, **kwargs):
state = {'class': self.net.__class__.__name__, 'weights': self.net.get_weights()}
state.update(kwargs)
return state
def save_state(self, **kwargs):
state = self.make_state(**kwargs)
self.states += [state]
def update_state(self, number, **kwargs):
if number < len(self.states):
self.states[number] = self.make_state(**kwargs)
else:
for i in range(len(self.states), number):
self.states += [None]
self.states += self.make_state(**kwargs)
def get_states(self):
return self.states
def __init__(self, *args, **kwargs):
super(LearningSoup, self).__init__(**kwargs)
if __name__ == '__main__':
@ -105,4 +161,6 @@ if __name__ == '__main__':
soup.evolve()
soup.print_all()
exp.log(soup.count())
exp.save(soup=soup) # you can access soup.historical_particles[particle_uid].states[time_step]['loss']
# or soup.historical_particles[particle_uid].states[time_step]['weights'] from soup.dill