All Experiments debugged
ToDo: - convert strings in pathlib.Path objects - check usage of fixpoint tests
This commit is contained in:
parent
36377ee27d
commit
c1f58f2675
@ -68,17 +68,13 @@ class MixedSettingExperiment:
|
|||||||
|
|
||||||
if self.train_nets == "before_SA":
|
if self.train_nets == "before_SA":
|
||||||
for _ in range(self.ST_steps_between_SA):
|
for _ in range(self.ST_steps_between_SA):
|
||||||
input_data = net.input_weight_matrix()
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||||
target_data = net.create_target_weights(input_data)
|
|
||||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
|
||||||
net.self_application(self.SA_steps, self.log_step_size)
|
net.self_application(self.SA_steps, self.log_step_size)
|
||||||
|
|
||||||
elif self.train_nets == "after_SA":
|
elif self.train_nets == "after_SA":
|
||||||
net.self_application(self.SA_steps, self.log_step_size)
|
net.self_application(self.SA_steps, self.log_step_size)
|
||||||
for _ in range(self.ST_steps_between_SA):
|
for _ in range(self.ST_steps_between_SA):
|
||||||
input_data = net.input_weight_matrix()
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||||
target_data = net.create_target_weights(input_data)
|
|
||||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
|
||||||
|
|
||||||
print(
|
print(
|
||||||
f"\nLast weight matrix (epoch: {j}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
|
f"\nLast weight matrix (epoch: {j}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
|
||||||
|
@ -11,7 +11,7 @@ from network import Net
|
|||||||
from visualization import bar_chart_fixpoints, box_plot, write_file
|
from visualization import bar_chart_fixpoints, box_plot, write_file
|
||||||
|
|
||||||
|
|
||||||
def add_noise(input_data, epsilon = pow(10, -5)):
|
def add_noise(input_data, epsilon=pow(10, -5)):
|
||||||
|
|
||||||
output = copy.deepcopy(input_data)
|
output = copy.deepcopy(input_data)
|
||||||
for k in range(len(input_data)):
|
for k in range(len(input_data)):
|
||||||
@ -63,8 +63,6 @@ class RobustnessExperiment:
|
|||||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||||
|
|
||||||
for _ in range(self.ST_steps):
|
for _ in range(self.ST_steps):
|
||||||
input_data = net.input_weight_matrix()
|
|
||||||
target_data = net.create_target_weights(input_data)
|
|
||||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||||
|
|
||||||
self.nets.append(net)
|
self.nets.append(net)
|
||||||
@ -86,7 +84,7 @@ class RobustnessExperiment:
|
|||||||
# Extra safety for the value of the weights
|
# Extra safety for the value of the weights
|
||||||
original_net_clone.load_state_dict(copy.deepcopy(original_net.state_dict()))
|
original_net_clone.load_state_dict(copy.deepcopy(original_net.state_dict()))
|
||||||
|
|
||||||
noisy_weights = add_noise(original_net_clone.input_weight_matrix())
|
noisy_weights = add_noise(original_net_clone.input_weight_matrix(), epsilon=pow(10, -j))
|
||||||
original_net_clone.apply_weights(noisy_weights)
|
original_net_clone.apply_weights(noisy_weights)
|
||||||
|
|
||||||
# Testing if the new net is still an identity function after applying noise
|
# Testing if the new net is still an identity function after applying noise
|
||||||
|
@ -1,6 +1,8 @@
|
|||||||
import random
|
import random
|
||||||
import os.path
|
import os.path
|
||||||
import pickle
|
import pickle
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
@ -12,7 +14,7 @@ from visualization import plot_loss, bar_chart_fixpoints, plot_3d_soup, line_cha
|
|||||||
|
|
||||||
class SoupExperiment:
|
class SoupExperiment:
|
||||||
def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, attack_chance,
|
def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, attack_chance,
|
||||||
train_nets, ST_steps, epochs, log_step_size, directory_name):
|
train_nets, ST_steps, epochs, log_step_size, directory: Union[str, Path]):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.population_size = population_size
|
self.population_size = population_size
|
||||||
|
|
||||||
@ -40,8 +42,8 @@ class SoupExperiment:
|
|||||||
# <self.fixpoint_counters_history> is used for keeping track of the amount of fixpoints in %
|
# <self.fixpoint_counters_history> is used for keeping track of the amount of fixpoints in %
|
||||||
self.fixpoint_counters_history = []
|
self.fixpoint_counters_history = []
|
||||||
|
|
||||||
self.directory_name = directory_name
|
self.directory = Path(directory)
|
||||||
os.mkdir(self.directory_name)
|
self.directory.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
self.population = []
|
self.population = []
|
||||||
self.populate_environment()
|
self.populate_environment()
|
||||||
@ -69,8 +71,7 @@ class SoupExperiment:
|
|||||||
loop_epochs.set_description("Evolving soup %s" % i)
|
loop_epochs.set_description("Evolving soup %s" % i)
|
||||||
|
|
||||||
# A network attacking another network with a given percentage
|
# A network attacking another network with a given percentage
|
||||||
chance = random.randint(1, 100)
|
if random.randint(1, 100) <= self.attack_chance:
|
||||||
if chance <= self.attack_chance:
|
|
||||||
random_net1, random_net2 = random.sample(range(self.population_size), 2)
|
random_net1, random_net2 = random.sample(range(self.population_size), 2)
|
||||||
random_net1 = self.population[random_net1]
|
random_net1 = self.population[random_net1]
|
||||||
random_net2 = self.population[random_net2]
|
random_net2 = self.population[random_net2]
|
||||||
@ -91,24 +92,25 @@ class SoupExperiment:
|
|||||||
self.fixpoint_counters["fix_sec"]) / self.population_size, 1)
|
self.fixpoint_counters["fix_sec"]) / self.population_size, 1)
|
||||||
self.fixpoint_counters_history.append(fixpoints_percentage)
|
self.fixpoint_counters_history.append(fixpoints_percentage)
|
||||||
|
|
||||||
# Resetting the fixpoint counter. Last iteration not to be reset - it is important for the bar_chart_fixpoints().
|
# Resetting the fixpoint counter. Last iteration not to be reset -
|
||||||
|
# it is important for the bar_chart_fixpoints().
|
||||||
if i < self.epochs:
|
if i < self.epochs:
|
||||||
self.reset_fixpoint_counters()
|
self.reset_fixpoint_counters()
|
||||||
|
|
||||||
def weights_evolution_3d_experiment(self):
|
def weights_evolution_3d_experiment(self):
|
||||||
exp_name = f"soup_{self.population_size}_nets_{self.ST_steps}_training_{self.epochs}_epochs"
|
exp_name = f"soup_{self.population_size}_nets_{self.ST_steps}_training_{self.epochs}_epochs"
|
||||||
return plot_3d_soup(self.population, exp_name, self.directory_name)
|
return plot_3d_soup(self.population, exp_name, self.directory)
|
||||||
|
|
||||||
def count_fixpoints(self):
|
def count_fixpoints(self):
|
||||||
test_for_fixpoints(self.fixpoint_counters, self.population)
|
test_for_fixpoints(self.fixpoint_counters, self.population)
|
||||||
exp_details = f"Evolution steps: {self.epochs} epochs"
|
exp_details = f"Evolution steps: {self.epochs} epochs"
|
||||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory, self.net_learning_rate,
|
||||||
exp_details)
|
exp_details)
|
||||||
|
|
||||||
def fixpoint_percentage(self):
|
def fixpoint_percentage(self):
|
||||||
runs = self.epochs / self.ST_steps
|
runs = self.epochs / self.ST_steps
|
||||||
SA_steps = None
|
SA_steps = None
|
||||||
line_chart_fixpoints(self.fixpoint_counters_history, runs, self.ST_steps, SA_steps, self.directory_name,
|
line_chart_fixpoints(self.fixpoint_counters_history, runs, self.ST_steps, SA_steps, self.directory,
|
||||||
self.population_size)
|
self.population_size)
|
||||||
|
|
||||||
def visualize_loss(self):
|
def visualize_loss(self):
|
||||||
@ -116,7 +118,7 @@ class SoupExperiment:
|
|||||||
net_loss_history = self.population[i].loss_history
|
net_loss_history = self.population[i].loss_history
|
||||||
self.loss_history.append(net_loss_history)
|
self.loss_history.append(net_loss_history)
|
||||||
|
|
||||||
plot_loss(self.loss_history, self.directory_name)
|
plot_loss(self.loss_history, self.directory)
|
||||||
|
|
||||||
def reset_fixpoint_counters(self):
|
def reset_fixpoint_counters(self):
|
||||||
self.fixpoint_counters = {
|
self.fixpoint_counters = {
|
||||||
@ -138,6 +140,7 @@ def run_soup_experiment(population_size, attack_chance, net_input_size, net_hidd
|
|||||||
|
|
||||||
# Running the experiments
|
# Running the experiments
|
||||||
for i in range(runs):
|
for i in range(runs):
|
||||||
|
# FIXME: Make this a pathlib.Path() Operation
|
||||||
directory_name = f"experiments/soup/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
directory_name = f"experiments/soup/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||||
|
|
||||||
soup_experiment = SoupExperiment(
|
soup_experiment = SoupExperiment(
|
||||||
@ -166,6 +169,7 @@ def run_soup_experiment(population_size, attack_chance, net_input_size, net_hidd
|
|||||||
range(len(fixpoints_percentages))]
|
range(len(fixpoints_percentages))]
|
||||||
|
|
||||||
# Creating a folder for the summary of the current runs
|
# Creating a folder for the summary of the current runs
|
||||||
|
# FIXME: Make this a pathlib.Path() Operation
|
||||||
directory_name = f"experiments/soup/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
directory_name = f"experiments/soup/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||||
os.mkdir(directory_name)
|
os.mkdir(directory_name)
|
||||||
|
|
||||||
|
@ -54,7 +54,7 @@ def is_secondary_fixpoint(network: Net, epsilon: float = pow(10, -5)) -> bool:
|
|||||||
|
|
||||||
|
|
||||||
def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None):
|
def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None):
|
||||||
id_functions = id_functions or None
|
id_functions = id_functions or list()
|
||||||
|
|
||||||
for i in range(len(nets)):
|
for i in range(len(nets)):
|
||||||
net = nets[i]
|
net = nets[i]
|
||||||
|
4
main.py
4
main.py
@ -40,11 +40,11 @@ if __name__ == '__main__':
|
|||||||
# Constants:
|
# Constants:
|
||||||
NET_INPUT_SIZE = 4
|
NET_INPUT_SIZE = 4
|
||||||
NET_OUT_SIZE = 1
|
NET_OUT_SIZE = 1
|
||||||
run_ST_experiment_bool = True
|
run_ST_experiment_bool = False
|
||||||
run_SA_experiment_bool = False
|
run_SA_experiment_bool = False
|
||||||
run_soup_experiment_bool = False
|
run_soup_experiment_bool = False
|
||||||
run_mixed_experiment_bool = False
|
run_mixed_experiment_bool = False
|
||||||
run_robustness_bool = False
|
run_robustness_bool = True
|
||||||
|
|
||||||
""" ------------------------------------- Self-training (ST) experiment ------------------------------------- """
|
""" ------------------------------------- Self-training (ST) experiment ------------------------------------- """
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user