plotting
This commit is contained in:
@ -1,7 +1,8 @@
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
from experiment import Experiment, SoupExperiment
|
||||
from experiment import Experiment
|
||||
# noinspection PyUnresolvedReferences
|
||||
from soup import Soup
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import numpy as np
|
||||
@ -23,29 +24,42 @@ def build_args():
|
||||
return arg_parser.parse_args()
|
||||
|
||||
|
||||
def build_from_soup(soup):
|
||||
particles = soup.historical_particles
|
||||
particle_dict = [dict(trajectory=[timestamp['weights'] for timestamp in particle],
|
||||
fitted=[timestamp['fitted'] for timestamp in particle],
|
||||
loss=[timestamp['loss'] for timestamp in particle],
|
||||
time=[timestamp['time'] for timestamp in particle]) for particle in particles.values()]
|
||||
return particle_dict
|
||||
|
||||
|
||||
def plot_latent_trajectories(soup_or_experiment, filename='latent_trajectory_plot'):
|
||||
assert isinstance(soup_or_experiment, Union[Experiment, SoupExperiment])
|
||||
bupu = cl.scales['9']['seq']['BuPu']
|
||||
data_dict = soup_or_experiment.data_storage
|
||||
assert isinstance(soup_or_experiment, (Experiment, Soup))
|
||||
bupu = cl.scales['11']['div']['RdYlGn']
|
||||
data_dict = soup_or_experiment.data_storage if isinstance(soup_or_experiment, Experiment) \
|
||||
else build_from_soup(soup_or_experiment)
|
||||
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
|
||||
|
||||
# Fit the mebedding space
|
||||
transformer = TSNE()
|
||||
for trajectory_id in data_dict:
|
||||
transformer.fit(np.asarray(data_dict[trajectory_id]))
|
||||
for particle_dict in data_dict:
|
||||
array = np.asarray([np.hstack([x.flatten() for x in timestamp]).flatten()
|
||||
for timestamp in particle_dict['trajectory']])
|
||||
particle_dict['trajectory'] = array
|
||||
transformer.fit(array)
|
||||
|
||||
# Transform data accordingly and plot it
|
||||
data = []
|
||||
for trajectory_id in data_dict:
|
||||
transformed = transformer._fit(np.asarray(data_dict[trajectory_id]))
|
||||
for p_id, particle_dict in enumerate(data_dict):
|
||||
transformed = transformer._fit(np.asarray(particle_dict['trajectory']))
|
||||
line_trace = go.Scatter(
|
||||
x=transformed[:, 0],
|
||||
y=transformed[:, 1],
|
||||
text='Hovertext goes here'.format(),
|
||||
line=dict(color=scale[trajectory_id]),
|
||||
line=dict(color=scale[p_id]),
|
||||
# legendgroup='Position -{}'.format(pos),
|
||||
# name='Position -{}'.format(pos),
|
||||
showlegend=False,
|
||||
name='Particle - {}'.format(p_id),
|
||||
showlegend=True,
|
||||
# hoverinfo='text',
|
||||
mode='lines')
|
||||
line_start = go.Scatter(mode='markers', x=[transformed[0, 0]], y=[transformed[0, 1]],
|
||||
@ -73,34 +87,38 @@ def plot_latent_trajectories(soup_or_experiment, filename='latent_trajectory_plo
|
||||
pass
|
||||
|
||||
|
||||
def plot_latent_trajectories_3D(data_dict, filename='plot'):
|
||||
def plot_latent_trajectories_3D(soup_or_experiment, filename='plot'):
|
||||
def norm(val, a=0, b=0.25):
|
||||
return (val - a) / (b - a)
|
||||
|
||||
bupu = cl.scales['9']['seq']['BuPu']
|
||||
data_dict = soup_or_experiment.data_storage if isinstance(soup_or_experiment, Experiment) \
|
||||
else build_from_soup(soup_or_experiment)
|
||||
|
||||
bupu = cl.scales['11']['div']['RdYlGn']
|
||||
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
|
||||
|
||||
max_len = max([len(trajectory) for trajectory in data_dict.values()])
|
||||
|
||||
# Fit the mebedding space
|
||||
# Fit the embedding space
|
||||
transformer = TSNE()
|
||||
for trajectory_id in data_dict:
|
||||
transformer.fit(data_dict[trajectory_id])
|
||||
for particle_dict in data_dict:
|
||||
array = np.asarray([np.hstack([x.flatten() for x in timestamp]).flatten()
|
||||
for timestamp in particle_dict['trajectory']])
|
||||
particle_dict['trajectory'] = array
|
||||
transformer.fit(array)
|
||||
|
||||
# Transform data accordingly and plot it
|
||||
data = []
|
||||
for trajectory_id in data_dict:
|
||||
transformed = transformer._fit(np.asarray(data_dict[trajectory_id]))
|
||||
for p_id, particle_dict in enumerate(data_dict):
|
||||
transformed = transformer._fit(particle_dict['trajectory'])
|
||||
trace = go.Scatter3d(
|
||||
x=transformed[:, 0],
|
||||
y=transformed[:, 1],
|
||||
z=np.arange(transformed.shape[0]),
|
||||
text='Hovertext goes here'.format(),
|
||||
line=dict(color=scale[trajectory_id]),
|
||||
# legendgroup='Position -{}'.format(pos),
|
||||
# name='Position -{}'.format(pos),
|
||||
showlegend=False,
|
||||
# hoverinfo='text',
|
||||
z=np.asarray(particle_dict['time']),
|
||||
text='Particle: {}<br> It had {} lifes.'.format(p_id, len(particle_dict['trajectory'])),
|
||||
line=dict(color=scale[p_id]),
|
||||
# legendgroup='Particle - {}'.format(p_id),
|
||||
name='Particle -{}'.format(p_id),
|
||||
# showlegend=True,
|
||||
hoverinfo='text',
|
||||
mode='lines')
|
||||
data.append(trace)
|
||||
|
||||
@ -109,7 +127,7 @@ def plot_latent_trajectories_3D(data_dict, filename='plot'):
|
||||
yaxis=dict(tickwidth=1, title='transformed Y'),
|
||||
zaxis=dict(tickwidth=1, title='Epoch')),
|
||||
title='{} - Latent Trajectory Movement'.format('Penis'),
|
||||
width=800, height=800,
|
||||
# width=0, height=0,
|
||||
margin=dict(l=0, r=0, b=0, t=0))
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
@ -213,4 +231,4 @@ if __name__ == '__main__':
|
||||
in_file = args.in_file[0]
|
||||
out_file = args.out_file
|
||||
|
||||
search_and_apply(in_file, plot_latent_trajectories)
|
||||
search_and_apply(in_file, plot_latent_trajectories_3D)
|
||||
|
Reference in New Issue
Block a user