Learning Neural Network with FFT feature reduction
This commit is contained in:
108
code/network.py
108
code/network.py
@ -8,7 +8,7 @@ from keras.layers import SimpleRNN, Dense
|
||||
from keras.layers import Input, TimeDistributed
|
||||
from tqdm import tqdm
|
||||
|
||||
from experiment import FixpointExperiment
|
||||
from experiment import FixpointExperiment, IdentLearningExperiment
|
||||
|
||||
|
||||
def normalize_id(value, norm):
|
||||
@ -36,7 +36,6 @@ def are_weights_within(network_weights, lower_bound, upper_bound):
|
||||
return True
|
||||
|
||||
|
||||
|
||||
class NeuralNetwork:
|
||||
|
||||
@staticmethod
|
||||
@ -52,10 +51,12 @@ class NeuralNetwork:
|
||||
return s
|
||||
|
||||
def __init__(self, **params):
|
||||
self.model = Sequential()
|
||||
self.params = dict(epsilon=0.00000000000001)
|
||||
self.params.update(params)
|
||||
self.keras_params = dict(activation='linear', use_bias=False)
|
||||
self.silent = True
|
||||
self.model = None
|
||||
|
||||
def silence(self):
|
||||
self.silent = True
|
||||
@ -64,7 +65,7 @@ class NeuralNetwork:
|
||||
def unsilence(self):
|
||||
self.silent = False
|
||||
return self
|
||||
|
||||
|
||||
def with_params(self, **kwargs):
|
||||
self.params.update(kwargs)
|
||||
return self
|
||||
@ -79,6 +80,10 @@ class NeuralNetwork:
|
||||
def set_weights(self, new_weights):
|
||||
return self.model.set_weights(new_weights)
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
# Placeholder
|
||||
return old_weights
|
||||
|
||||
def apply_to_network(self, other_network):
|
||||
new_weights = self.apply_to_weights(other_network.get_weights())
|
||||
return new_weights
|
||||
@ -110,14 +115,16 @@ class NeuralNetwork:
|
||||
def is_fixpoint(self, degree=1, epsilon=None):
|
||||
epsilon = epsilon or self.params.get('epsilon')
|
||||
old_weights = self.get_weights()
|
||||
assert degree, "Degree cannot be 0, Null"
|
||||
self.silence()
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_network(self)
|
||||
|
||||
self.unsilence()
|
||||
if are_weights_diverged(new_weights):
|
||||
return False
|
||||
for layer_id,layer in enumerate(old_weights):
|
||||
for cell_id,cell in enumerate(layer):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id,weight in enumerate(cell):
|
||||
new_weight = new_weights[layer_id][cell_id][weight_id]
|
||||
if abs(new_weight - weight) >= epsilon:
|
||||
@ -131,17 +138,15 @@ class NeuralNetwork:
|
||||
print(self.repr_weights())
|
||||
|
||||
|
||||
|
||||
class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
|
||||
def __init__(self, width, depth, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.width = width
|
||||
self.depth = depth
|
||||
self.model = Sequential()
|
||||
self.model.add(Dense(units=width, input_dim=4, **self.keras_params))
|
||||
for _ in range(depth-1):
|
||||
self.model.add(Dense(units=width, **self.keras_params))
|
||||
self.model.add(Dense(units=self.width, input_dim=4, **self.keras_params))
|
||||
for _ in range(self.depth-1):
|
||||
self.model.add(Dense(units=self.width, **self.keras_params))
|
||||
self.model.add(Dense(units=1, **self.keras_params))
|
||||
|
||||
def apply(self, *input):
|
||||
@ -151,16 +156,21 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
def apply_to_weights(self, old_weights):
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
max_layer_id = len(old_weights) - 1
|
||||
|
||||
for layer_id,layer in enumerate(old_weights):
|
||||
max_cell_id = len(layer) - 1
|
||||
for cell_id,cell in enumerate(layer):
|
||||
|
||||
for cell_id, cell in enumerate(layer):
|
||||
max_weight_id = len(cell) - 1
|
||||
for weight_id,weight in enumerate(cell):
|
||||
|
||||
for weight_id, weight in enumerate(cell):
|
||||
normal_layer_id = normalize_id(layer_id, max_layer_id)
|
||||
normal_cell_id = normalize_id(cell_id, max_cell_id)
|
||||
normal_weight_id = normalize_id(weight_id, max_weight_id)
|
||||
|
||||
new_weight = self.apply(weight, normal_layer_id, normal_cell_id, normal_weight_id)
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
|
||||
if self.params.get("print_all_weight_updates", False) and not self.silent:
|
||||
print("updated old weight " + str(weight) + "\t @ (" + str(layer_id) + "," + str(cell_id) + "," + str(weight_id) + ") to new value " + str(new_weight) + "\t calling @ (" + str(normal_layer_id) + "," + str(normal_cell_id) + "," + str(normal_weight_id) + ")")
|
||||
return new_weights
|
||||
@ -203,7 +213,6 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
self.aggregates = aggregates
|
||||
self.width = width
|
||||
self.depth = depth
|
||||
self.model = Sequential()
|
||||
self.model.add(Dense(units=width, input_dim=self.aggregates, **self.keras_params))
|
||||
for _ in range(depth-1):
|
||||
self.model.add(Dense(units=width, **self.keras_params))
|
||||
@ -272,8 +281,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
print("to new weight aggregations " + str(new_aggregations))
|
||||
print("resulting in network weights ...")
|
||||
print(self.__class__.weights_to_string(new_weights))
|
||||
return new_weights
|
||||
|
||||
return new_weights
|
||||
|
||||
|
||||
class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
@ -283,7 +291,6 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
self.features = 1
|
||||
self.width = width
|
||||
self.depth = depth
|
||||
self.model = Sequential()
|
||||
self.model.add(SimpleRNN(units=width, input_dim=self.features, return_sequences=True, **self.keras_params))
|
||||
for _ in range(depth-1):
|
||||
self.model.add(SimpleRNN(units=width, return_sequences=True, **self.keras_params))
|
||||
@ -312,14 +319,67 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
current_weight_id += 1
|
||||
return new_weights
|
||||
|
||||
|
||||
|
||||
class LearningNeuralNetwork(NeuralNetwork):
|
||||
|
||||
@staticmethod
|
||||
def _apply_mean_reduction(self):
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
def _apply_fft_reduction(self):
|
||||
return
|
||||
|
||||
def __init__(self, width, depth, features, mode='fft', **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.width = width
|
||||
self.depth = depth
|
||||
self.features = features
|
||||
self.compile_params = dict(loss='mse', optimizer='sgd')
|
||||
self.apply_reduction = self._apply_fft_reduction if mode.lower()=='fft' else self._apply_mean_reduction
|
||||
self.model = Sequential()
|
||||
self.model.add(Dense(units=self.width, input_dim=self.features, **self.keras_params))
|
||||
for _ in range(self.depth-1):
|
||||
self.model.add(Dense(units=self.width, **self.keras_params))
|
||||
self.model.add(Dense(units=self.features, **self.keras_params))
|
||||
self.model.compile(**self.compile_params)
|
||||
|
||||
def with_compile_params(self, **kwargs):
|
||||
self.compile_params.update(kwargs)
|
||||
return self
|
||||
|
||||
def learn(self, epochs, batchsize=1):
|
||||
with tqdm(total=epochs, ascii=True,
|
||||
desc='Type: {t} @ Epoch:'.format(t=self.__class__.__name__),
|
||||
postfix=["Loss", dict(value=0)]) as bar:
|
||||
for epoch in range(epochs):
|
||||
old_weights = self.get_weights()
|
||||
single_dim_weights = np.hstack([w.flatten() for w in old_weights])
|
||||
x = np.fft.fft(single_dim_weights, n=self.features)
|
||||
history = self.model.fit(x=x, y=x)
|
||||
bar.postfix[1]["value"] = history
|
||||
bar.update()
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')
|
||||
net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random, print_all_weight_updates=False, use_bias=True)
|
||||
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear').with_params(print_all_weight_updates=True)
|
||||
# net.print_weights()
|
||||
exp.run_net(net, 100)
|
||||
exp.log(exp.counters)
|
||||
if False:
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')
|
||||
net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random, print_all_weight_updates=False, use_bias=True)
|
||||
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear').with_params(print_all_weight_updates=True)
|
||||
|
||||
# net.print_weights()
|
||||
exp.run_net(net, 100)
|
||||
exp.log(exp.counters)
|
||||
|
||||
if True:
|
||||
with IdentLearningExperiment() as exp:
|
||||
net = LearningNeuralNetwork(width=2, depth=2, features=2) \
|
||||
.with_keras_params(activation='linear') \
|
||||
.with_params(print_all_weight_updates=False)
|
||||
net.learn(100)
|
||||
|
||||
|
Reference in New Issue
Block a user