Learning Neural Network with FFT feature reduction

This commit is contained in:
Si11ium
2019-03-04 14:18:41 +01:00
parent f1a8d8184b
commit b7f5747f50
4 changed files with 93 additions and 33 deletions

View File

@ -13,11 +13,8 @@ class Experiment:
def __init__(self, name=None, ident=None):
self.experiment_id = ident or time.time()
# TODO reapair this path
this_file = os.path.realpath(os.getcwd())
# Was wolltest du hier tun? Vorher die nummer war unsinnig.
self.experiment_name = name or os.path.basename(this_file).split('.')[0]
self.base_dir = os.path.join(os.getcwd(), self.experiment_name)
self.experiment_name = name or 'experiment'
self.base_dir = os.path.join('experiments', self.experiment_name)
self.next_iteration = 0
self.log_messages = []
@ -25,9 +22,8 @@ class Experiment:
self.dir = os.path.join(self.base_dir, 'experiments', 'exp-{name}-{id}-{it}'.format(
name=self.experiment_name, id=self.experiment_id, it=self.next_iteration)
)
# Use makedirs for subfolder creation
os.makedirs(self.dir)
# os.mkdir(self.dir)
print("** created {dir} **".format(dir=self.dir))
return self
@ -54,7 +50,7 @@ class Experiment:
class FixpointExperiment(Experiment):
def __init__(self):
super().__init__()
super().__init__(name=self.__class__.__name__)
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
self.interesting_fixpoints = []
@ -85,3 +81,6 @@ class FixpointExperiment(Experiment):
class SoupExperiment(Experiment):
pass
class IdentLearningExperiment(Experiment):
pass

View File

@ -824,7 +824,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
"version": "3.6.8"
}
},
"nbformat": 4,

View File

@ -8,7 +8,7 @@ from keras.layers import SimpleRNN, Dense
from keras.layers import Input, TimeDistributed
from tqdm import tqdm
from experiment import FixpointExperiment
from experiment import FixpointExperiment, IdentLearningExperiment
def normalize_id(value, norm):
@ -36,7 +36,6 @@ def are_weights_within(network_weights, lower_bound, upper_bound):
return True
class NeuralNetwork:
@staticmethod
@ -52,10 +51,12 @@ class NeuralNetwork:
return s
def __init__(self, **params):
self.model = Sequential()
self.params = dict(epsilon=0.00000000000001)
self.params.update(params)
self.keras_params = dict(activation='linear', use_bias=False)
self.silent = True
self.model = None
def silence(self):
self.silent = True
@ -64,7 +65,7 @@ class NeuralNetwork:
def unsilence(self):
self.silent = False
return self
def with_params(self, **kwargs):
self.params.update(kwargs)
return self
@ -79,6 +80,10 @@ class NeuralNetwork:
def set_weights(self, new_weights):
return self.model.set_weights(new_weights)
def apply_to_weights(self, old_weights):
# Placeholder
return old_weights
def apply_to_network(self, other_network):
new_weights = self.apply_to_weights(other_network.get_weights())
return new_weights
@ -110,14 +115,16 @@ class NeuralNetwork:
def is_fixpoint(self, degree=1, epsilon=None):
epsilon = epsilon or self.params.get('epsilon')
old_weights = self.get_weights()
assert degree, "Degree cannot be 0, Null"
self.silence()
for _ in range(degree):
new_weights = self.apply_to_network(self)
self.unsilence()
if are_weights_diverged(new_weights):
return False
for layer_id,layer in enumerate(old_weights):
for cell_id,cell in enumerate(layer):
for cell_id, cell in enumerate(layer):
for weight_id,weight in enumerate(cell):
new_weight = new_weights[layer_id][cell_id][weight_id]
if abs(new_weight - weight) >= epsilon:
@ -131,17 +138,15 @@ class NeuralNetwork:
print(self.repr_weights())
class WeightwiseNeuralNetwork(NeuralNetwork):
def __init__(self, width, depth, **kwargs):
super().__init__(**kwargs)
self.width = width
self.depth = depth
self.model = Sequential()
self.model.add(Dense(units=width, input_dim=4, **self.keras_params))
for _ in range(depth-1):
self.model.add(Dense(units=width, **self.keras_params))
self.model.add(Dense(units=self.width, input_dim=4, **self.keras_params))
for _ in range(self.depth-1):
self.model.add(Dense(units=self.width, **self.keras_params))
self.model.add(Dense(units=1, **self.keras_params))
def apply(self, *input):
@ -151,16 +156,21 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
def apply_to_weights(self, old_weights):
new_weights = copy.deepcopy(old_weights)
max_layer_id = len(old_weights) - 1
for layer_id,layer in enumerate(old_weights):
max_cell_id = len(layer) - 1
for cell_id,cell in enumerate(layer):
for cell_id, cell in enumerate(layer):
max_weight_id = len(cell) - 1
for weight_id,weight in enumerate(cell):
for weight_id, weight in enumerate(cell):
normal_layer_id = normalize_id(layer_id, max_layer_id)
normal_cell_id = normalize_id(cell_id, max_cell_id)
normal_weight_id = normalize_id(weight_id, max_weight_id)
new_weight = self.apply(weight, normal_layer_id, normal_cell_id, normal_weight_id)
new_weights[layer_id][cell_id][weight_id] = new_weight
if self.params.get("print_all_weight_updates", False) and not self.silent:
print("updated old weight " + str(weight) + "\t @ (" + str(layer_id) + "," + str(cell_id) + "," + str(weight_id) + ") to new value " + str(new_weight) + "\t calling @ (" + str(normal_layer_id) + "," + str(normal_cell_id) + "," + str(normal_weight_id) + ")")
return new_weights
@ -203,7 +213,6 @@ class AggregatingNeuralNetwork(NeuralNetwork):
self.aggregates = aggregates
self.width = width
self.depth = depth
self.model = Sequential()
self.model.add(Dense(units=width, input_dim=self.aggregates, **self.keras_params))
for _ in range(depth-1):
self.model.add(Dense(units=width, **self.keras_params))
@ -272,8 +281,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
print("to new weight aggregations " + str(new_aggregations))
print("resulting in network weights ...")
print(self.__class__.weights_to_string(new_weights))
return new_weights
return new_weights
class RecurrentNeuralNetwork(NeuralNetwork):
@ -283,7 +291,6 @@ class RecurrentNeuralNetwork(NeuralNetwork):
self.features = 1
self.width = width
self.depth = depth
self.model = Sequential()
self.model.add(SimpleRNN(units=width, input_dim=self.features, return_sequences=True, **self.keras_params))
for _ in range(depth-1):
self.model.add(SimpleRNN(units=width, return_sequences=True, **self.keras_params))
@ -312,14 +319,67 @@ class RecurrentNeuralNetwork(NeuralNetwork):
new_weights[layer_id][cell_id][weight_id] = new_weight
current_weight_id += 1
return new_weights
class LearningNeuralNetwork(NeuralNetwork):
@staticmethod
def _apply_mean_reduction(self):
return
@staticmethod
def _apply_fft_reduction(self):
return
def __init__(self, width, depth, features, mode='fft', **kwargs):
super().__init__(**kwargs)
self.width = width
self.depth = depth
self.features = features
self.compile_params = dict(loss='mse', optimizer='sgd')
self.apply_reduction = self._apply_fft_reduction if mode.lower()=='fft' else self._apply_mean_reduction
self.model = Sequential()
self.model.add(Dense(units=self.width, input_dim=self.features, **self.keras_params))
for _ in range(self.depth-1):
self.model.add(Dense(units=self.width, **self.keras_params))
self.model.add(Dense(units=self.features, **self.keras_params))
self.model.compile(**self.compile_params)
def with_compile_params(self, **kwargs):
self.compile_params.update(kwargs)
return self
def learn(self, epochs, batchsize=1):
with tqdm(total=epochs, ascii=True,
desc='Type: {t} @ Epoch:'.format(t=self.__class__.__name__),
postfix=["Loss", dict(value=0)]) as bar:
for epoch in range(epochs):
old_weights = self.get_weights()
single_dim_weights = np.hstack([w.flatten() for w in old_weights])
x = np.fft.fft(single_dim_weights, n=self.features)
history = self.model.fit(x=x, y=x)
bar.postfix[1]["value"] = history
bar.update()
if __name__ == '__main__':
with FixpointExperiment() as exp:
for run_id in tqdm(range(100)):
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')
net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random, print_all_weight_updates=False, use_bias=True)
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear').with_params(print_all_weight_updates=True)
# net.print_weights()
exp.run_net(net, 100)
exp.log(exp.counters)
if False:
with FixpointExperiment() as exp:
for run_id in tqdm(range(100)):
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')
net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random, print_all_weight_updates=False, use_bias=True)
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear').with_params(print_all_weight_updates=True)
# net.print_weights()
exp.run_net(net, 100)
exp.log(exp.counters)
if True:
with IdentLearningExperiment() as exp:
net = LearningNeuralNetwork(width=2, depth=2, features=2) \
.with_keras_params(activation='linear') \
.with_params(print_all_weight_updates=False)
net.learn(100)

View File

@ -23,6 +23,7 @@ if __name__ == '__main__':
net.self_attack(100)
print(net.get_weights())
print(net.is_fixpoint())
if True:
net.set_weights(vary(0.01, 0.0))
print(net.get_weights())