wrote quick experimentation class
This commit is contained in:
@@ -3,6 +3,10 @@ from keras.models import Sequential, Model
|
|||||||
from keras.layers import SimpleRNN, Dense
|
from keras.layers import SimpleRNN, Dense
|
||||||
from keras.layers import Input, TimeDistributed
|
from keras.layers import Input, TimeDistributed
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
import time
|
||||||
|
import os
|
||||||
|
import dill
|
||||||
|
|
||||||
|
|
||||||
import itertools
|
import itertools
|
||||||
|
|
||||||
@@ -168,16 +172,47 @@ class FeedForwardNetwork(_BaseNetwork):
|
|||||||
bar.update()
|
bar.update()
|
||||||
return losses
|
return losses
|
||||||
|
|
||||||
|
class Experiment:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def from_dill(path):
|
||||||
|
with open(path) as dill_file:
|
||||||
|
return dill.load(dill_file)
|
||||||
|
|
||||||
|
def __init__(self, name=None, id=None):
|
||||||
|
self.experiment_id = id or time.time()
|
||||||
|
this_file = os.path.realpath(__file__)
|
||||||
|
self.experiment_name = name or os.path.basename(this_file)
|
||||||
|
self.base_dir = os.path.realpath((os.path.dirname(this_file) + "/..")) + "/"
|
||||||
|
self.next_iteration = 0
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
self.dir = self.base_dir + "experiments/exp-" + str(self.experiment_name) + "-" + str(self.experiment_id) + "-" + str(self.next_iteration) + "/"
|
||||||
|
os.mkdir(self.dir)
|
||||||
|
print("** created " + str(self.dir))
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_value, traceback):
|
||||||
|
self.save(experiment=self)
|
||||||
|
self.next_iteration += 1
|
||||||
|
|
||||||
|
def save(self, **kwargs):
|
||||||
|
for name,value in kwargs.items():
|
||||||
|
with open(self.dir + "/" + str(name) + ".dill", "wb") as dill_file:
|
||||||
|
dill.dump(value, dill_file)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
features, cells, layers = 2, 2, 2
|
with Experiment() as exp:
|
||||||
use_recurrent = False
|
features, cells, layers = 2, 2, 2
|
||||||
if use_recurrent:
|
use_recurrent = False
|
||||||
network = Network(features, cells, layers, recurrent=use_recurrent)
|
if use_recurrent:
|
||||||
r = RecurrentNetwork(network)
|
network = Network(features, cells, layers, recurrent=use_recurrent)
|
||||||
loss = r.fit(epochs=10)
|
r = RecurrentNetwork(network)
|
||||||
else:
|
loss = r.fit(epochs=10)
|
||||||
network = Network(features, cells, layers, recurrent=use_recurrent)
|
else:
|
||||||
ff = FeedForwardNetwork(network)
|
network = Network(features, cells, layers, recurrent=use_recurrent)
|
||||||
loss = ff.fit(epochs=10)
|
ff = FeedForwardNetwork(network)
|
||||||
print(loss)
|
loss = ff.fit(epochs=10)
|
||||||
|
print(loss)
|
||||||
|
|||||||
Reference in New Issue
Block a user