Visuals
This commit is contained in:
@ -24,20 +24,24 @@ def build_args():
|
||||
return arg_parser.parse_args()
|
||||
|
||||
|
||||
def build_from_soup(soup):
|
||||
def build_from_soup_or_exp(soup):
|
||||
particles = soup.historical_particles
|
||||
particle_dict = [dict(trajectory=[timestamp['weights'] for timestamp in particle],
|
||||
fitted=[timestamp['fitted'] for timestamp in particle],
|
||||
loss=[timestamp['loss'] for timestamp in particle],
|
||||
time=[timestamp['time'] for timestamp in particle]) for particle in particles.values()]
|
||||
return particle_dict
|
||||
particle_list = []
|
||||
for particle in particles.values():
|
||||
particle_dict = dict(
|
||||
trajectory=[event['weights'] for event in particle],
|
||||
time=[event['time'] for event in particle],
|
||||
action=[event['action'] for event in particle],
|
||||
counterpart=[event['counterpart'] for event in particle]
|
||||
)
|
||||
particle_list.append(particle_dict)
|
||||
return particle_list
|
||||
|
||||
|
||||
def plot_latent_trajectories(soup_or_experiment, filename='latent_trajectory_plot'):
|
||||
assert isinstance(soup_or_experiment, (Experiment, Soup))
|
||||
bupu = cl.scales['11']['div']['RdYlGn']
|
||||
data_dict = soup_or_experiment.data_storage if isinstance(soup_or_experiment, Experiment) \
|
||||
else build_from_soup(soup_or_experiment)
|
||||
data_dict = build_from_soup_or_exp(soup_or_experiment)
|
||||
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
|
||||
|
||||
# Fit the mebedding space
|
||||
@ -91,25 +95,22 @@ def plot_latent_trajectories_3D(soup_or_experiment, filename='plot'):
|
||||
def norm(val, a=0, b=0.25):
|
||||
return (val - a) / (b - a)
|
||||
|
||||
data_dict = soup_or_experiment.data_storage if isinstance(soup_or_experiment, Experiment) \
|
||||
else build_from_soup(soup_or_experiment)
|
||||
data_list = build_from_soup_or_exp(soup_or_experiment)
|
||||
|
||||
bupu = cl.scales['11']['div']['RdYlGn']
|
||||
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
|
||||
scale = cl.interp(bupu, len(data_list)+1) # Map color scale to N bins
|
||||
|
||||
# Fit the embedding space
|
||||
transformer = TSNE()
|
||||
for particle_dict in data_dict:
|
||||
array = np.asarray([np.hstack([x.flatten() for x in timestamp]).flatten()
|
||||
for timestamp in particle_dict['trajectory']])
|
||||
particle_dict['trajectory'] = array
|
||||
for particle_dict in data_list:
|
||||
array = np.asarray(particle_dict['trajectory'])
|
||||
transformer.fit(array)
|
||||
|
||||
# Transform data accordingly and plot it
|
||||
data = []
|
||||
for p_id, particle_dict in enumerate(data_dict):
|
||||
for p_id, particle_dict in enumerate(data_list):
|
||||
transformed = transformer._fit(particle_dict['trajectory'])
|
||||
trace = go.Scatter3d(
|
||||
line_trace = go.Scatter3d(
|
||||
x=transformed[:, 0],
|
||||
y=transformed[:, 1],
|
||||
z=np.asarray(particle_dict['time']),
|
||||
@ -120,9 +121,28 @@ def plot_latent_trajectories_3D(soup_or_experiment, filename='plot'):
|
||||
# showlegend=True,
|
||||
hoverinfo='text',
|
||||
mode='lines')
|
||||
data.append(trace)
|
||||
|
||||
layout = go.Layout(scene=dict(aspectratio=dict(x=2, y=2, z=1),
|
||||
line_start = go.Scatter3d(mode='markers', x=[transformed[0, 0]], y=[transformed[0, 1]],
|
||||
z=np.asarray(particle_dict['time'][0]),
|
||||
marker=dict(
|
||||
color='rgb(255, 0, 0)',
|
||||
size=4
|
||||
),
|
||||
showlegend=False
|
||||
)
|
||||
|
||||
line_end = go.Scatter3d(mode='markers', x=[transformed[-1, 0]], y=[transformed[-1, 1]],
|
||||
z=np.asarray(particle_dict['time'][-1]),
|
||||
marker=dict(
|
||||
color='rgb(0, 0, 0)',
|
||||
size=4
|
||||
),
|
||||
showlegend=False
|
||||
)
|
||||
|
||||
data.extend([line_trace, line_start, line_end])
|
||||
|
||||
layout = go.Layout(scene=dict(aspectratio=dict(x=2, y=2, z=2),
|
||||
xaxis=dict(tickwidth=1, title='Transformed X'),
|
||||
yaxis=dict(tickwidth=1, title='transformed Y'),
|
||||
zaxis=dict(tickwidth=1, title='Epoch')),
|
||||
|
Reference in New Issue
Block a user