Refactor:
Step 4 - Aggregating Neural Networks Step 5 - Training Neural Networks
This commit is contained in:
@ -4,48 +4,48 @@ import dill
|
||||
from tqdm import tqdm
|
||||
import copy
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class _BaseExperiment(ABC):
|
||||
|
||||
class Experiment:
|
||||
|
||||
@staticmethod
|
||||
def from_dill(path):
|
||||
with open(path, "rb") as dill_file:
|
||||
return dill.load(dill_file)
|
||||
|
||||
|
||||
def __init__(self, name=None, ident=None):
|
||||
self.experiment_id = '{}_{}'.format(ident or '', time.time())
|
||||
self.experiment_id = f'{ident or ""}_{time.time()}'
|
||||
self.experiment_name = name or 'unnamed_experiment'
|
||||
self.next_iteration = 0
|
||||
self.log_messages = []
|
||||
self.historical_particles = {}
|
||||
|
||||
self.log_messages = list()
|
||||
self.historical_particles = dict()
|
||||
|
||||
def __enter__(self):
|
||||
self.dir = os.path.join('experiments', 'exp-{name}-{id}-{it}'.format(
|
||||
name=self.experiment_name, id=self.experiment_id, it=self.next_iteration)
|
||||
)
|
||||
self.dir = os.path.join('experiments', f'exp-{self.experiment_name}-{self.experiment_id}-{self.next_iteration}')
|
||||
os.makedirs(self.dir)
|
||||
print("** created {dir} **".format(dir=self.dir))
|
||||
print(f'** created {self.dir} **')
|
||||
return self
|
||||
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
self.save(experiment=self.without_particles())
|
||||
self.save_log()
|
||||
self.next_iteration += 1
|
||||
|
||||
|
||||
def log(self, message, **kwargs):
|
||||
self.log_messages.append(message)
|
||||
print(message, **kwargs)
|
||||
|
||||
|
||||
def save_log(self, log_name="log"):
|
||||
with open(os.path.join(self.dir, "{name}.txt".format(name=log_name)), "w") as log_file:
|
||||
with open(os.path.join(self.dir, f"{log_name}.txt"), "w") as log_file:
|
||||
for log_message in self.log_messages:
|
||||
print(str(log_message), file=log_file)
|
||||
|
||||
def __copy__(self):
|
||||
copy_ = Experiment(name=self.experiment_name,)
|
||||
copy_.__dict__ = {attr: self.__dict__[attr] for attr in self.__dict__ if
|
||||
attr not in ['particles', 'historical_particles']}
|
||||
return copy_
|
||||
self_copy = self.__class__(name=self.experiment_name,)
|
||||
self_copy.__dict__ = {attr: self.__dict__[attr] for attr in self.__dict__ if
|
||||
attr not in ['particles', 'historical_particles']}
|
||||
return self_copy
|
||||
|
||||
def without_particles(self):
|
||||
self_copy = copy.copy(self)
|
||||
@ -55,14 +55,29 @@ class Experiment:
|
||||
|
||||
def save(self, **kwargs):
|
||||
for name, value in kwargs.items():
|
||||
with open(os.path.join(self.dir, "{name}.dill".format(name=name)), "wb") as dill_file:
|
||||
with open(os.path.join(self.dir, f"{name}.dill"), "wb") as dill_file:
|
||||
dill.dump(value, dill_file)
|
||||
|
||||
@abstractmethod
|
||||
def run_net(self, network, iterations, run_id=0):
|
||||
raise NotImplementedError
|
||||
pass
|
||||
|
||||
|
||||
class Experiment(_BaseExperiment):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(Experiment, self).__init__(**kwargs)
|
||||
pass
|
||||
|
||||
def run_net(self, network, iterations, run_id=0):
|
||||
pass
|
||||
|
||||
|
||||
class FixpointExperiment(Experiment):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
super().__init__(**kwargs)
|
||||
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
||||
self.interesting_fixpoints = []
|
||||
@ -107,14 +122,14 @@ class MixedFixpointExperiment(FixpointExperiment):
|
||||
if run_id:
|
||||
net.save_state()
|
||||
self.count(net)
|
||||
|
||||
|
||||
|
||||
|
||||
class SoupExperiment(Experiment):
|
||||
pass
|
||||
|
||||
|
||||
class IdentLearningExperiment(Experiment):
|
||||
|
||||
|
||||
def __init__(self):
|
||||
super(IdentLearningExperiment, self).__init__(name=self.__class__.__name__)
|
||||
pass
|
||||
|
Reference in New Issue
Block a user