bar plots
This commit is contained in:
@@ -19,19 +19,18 @@ if __name__ == '__main__':
|
||||
|
||||
if True:
|
||||
# WeightWise Neural Network
|
||||
for _ in range(10):
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(20)):
|
||||
net = ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2)
|
||||
.with_keras_params(activation='linear'))
|
||||
run_exp(net)
|
||||
K.clear_session()
|
||||
exp.log(exp.counters)
|
||||
exp.save(trajectorys=exp.without_particles())
|
||||
with FixpointExperiment(name="weightwise_self_application") as exp:
|
||||
for run_id in tqdm(range(20)):
|
||||
net = ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2)
|
||||
.with_keras_params(activation='linear'))
|
||||
run_exp(net)
|
||||
K.clear_session()
|
||||
exp.log(exp.counters)
|
||||
exp.save(trajectorys=exp.without_particles())
|
||||
|
||||
if False:
|
||||
# Aggregating Neural Network
|
||||
with FixpointExperiment() as exp:
|
||||
with FixpointExperiment(name="aggregating_self_application") as exp:
|
||||
for run_id in tqdm(range(10)):
|
||||
net = ParticleDecorator(AggregatingNeuralNetwork(aggregates=4, width=2, depth=2)
|
||||
.with_keras_params(activation='linear'))
|
||||
@@ -53,31 +52,33 @@ if __name__ == '__main__':
|
||||
|
||||
if False:
|
||||
# ok so this works quite realiably
|
||||
with FixpointExperiment() as exp:
|
||||
with FixpointExperiment(name="weightwise_learning") as exp:
|
||||
for i in range(10):
|
||||
run_count = 100
|
||||
net = TrainingNeuralNetworkDecorator(ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2)))
|
||||
net.with_params(epsilon=0.0001).with_keras_params(activation='linear')
|
||||
exp.historical_particles[net.get_uid()] = net
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
net.compiled()
|
||||
loss = net.train(epoch=run_id)
|
||||
if run_id % 10 == 0:
|
||||
run_exp(net)
|
||||
# run_exp(net)
|
||||
# net.save_state(time=run_id)
|
||||
K.clear_session()
|
||||
exp.save(trajectorys=exp.without_particles())
|
||||
|
||||
if False:
|
||||
# ok so this works quite realiably
|
||||
with FixpointExperiment() as exp:
|
||||
with FixpointExperiment(name="aggregating_learning") as exp:
|
||||
for i in range(10):
|
||||
run_count = 100
|
||||
net = TrainingNeuralNetworkDecorator(ParticleDecorator(AggregatingNeuralNetwork(4, width=2, depth=2)))
|
||||
net.with_params(epsilon=0.0001).with_keras_params(activation='linear')
|
||||
exp.historical_particles[net.get_uid()] = net
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
net.compiled()
|
||||
loss = net.train(epoch=run_id)
|
||||
if run_id % 10 == 0:
|
||||
run_exp(net)
|
||||
# run_exp(net)
|
||||
# net.save_state(time=run_id)
|
||||
K.clear_session()
|
||||
exp.save(trajectorys=exp.without_particles())
|
||||
|
||||
|
||||
Reference in New Issue
Block a user