bar plots
This commit is contained in:
@ -52,51 +52,57 @@ def count(counters, soup, notable_nets=[]):
|
||||
counters['other'] += 1
|
||||
return counters, notable_nets
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
with Experiment('mixed-self-fixpoints') as exp:
|
||||
exp.trials = 10
|
||||
exp.soup_size = 10
|
||||
exp.soup_life = 5
|
||||
exp.trains_per_selfattack_values = [10 * i for i in range(11)]
|
||||
exp.epsilon = 1e-4
|
||||
net_generators = []
|
||||
for activation in ['linear']: #['linear', 'sigmoid', 'relu']:
|
||||
for use_bias in [False]:
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
with Experiment('mixed-self-fixpoints') as exp:
|
||||
exp.trials = 10
|
||||
exp.soup_size = 10
|
||||
exp.soup_life = 5
|
||||
exp.trains_per_selfattack_values = [10 * i for i in range(11)]
|
||||
exp.epsilon = 1e-4
|
||||
net_generators = []
|
||||
for activation in ['linear']: # ['linear', 'sigmoid', 'relu']:
|
||||
for use_bias in [False]:
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
|
||||
all_names = []
|
||||
all_data = []
|
||||
for net_generator_id, net_generator in enumerate(net_generators):
|
||||
xs = []
|
||||
ys = []
|
||||
zs = []
|
||||
for trains_per_selfattack in exp.trains_per_selfattack_values:
|
||||
counters = generate_counters()
|
||||
notable_nets = []
|
||||
for soup_idx in tqdm(range(exp.trials)):
|
||||
soup = Soup(exp.soup_size, lambda net_generator=net_generator,exp=exp: TrainingNeuralNetworkDecorator(net_generator()).with_params(epsilon=exp.epsilon))
|
||||
soup.with_params(attacking_rate=0.1, learn_from_rate=-1, train=trains_per_selfattack, learn_from_severity=-1)
|
||||
soup.seed()
|
||||
name = str(soup.particles[0].net.__class__.__name__) + " activiation='" + str(soup.particles[0].get_keras_params().get('activation')) + "' use_bias=" + str(soup.particles[0].get_keras_params().get('use_bias'))
|
||||
for _ in range(exp.soup_life):
|
||||
soup.evolve()
|
||||
count(counters, soup, notable_nets)
|
||||
keras.backend.clear_session()
|
||||
all_names = []
|
||||
all_data = []
|
||||
for net_generator_id, net_generator in enumerate(net_generators):
|
||||
xs = []
|
||||
ys = []
|
||||
zs = []
|
||||
for trains_per_selfattack in exp.trains_per_selfattack_values:
|
||||
counters = generate_counters()
|
||||
notable_nets = []
|
||||
for soup_idx in tqdm(range(exp.trials)):
|
||||
soup = Soup(exp.soup_size,
|
||||
lambda net_generator=net_generator, exp=exp: TrainingNeuralNetworkDecorator(
|
||||
net_generator()).with_params(epsilon=exp.epsilon))
|
||||
soup.with_params(attacking_rate=0.1, learn_from_rate=-1, train=trains_per_selfattack,
|
||||
learn_from_severity=-1)
|
||||
soup.seed()
|
||||
name = str(soup.particles[0].net.__class__.__name__) + " activiation='" + str(
|
||||
soup.particles[0].get_keras_params().get('activation')) + "' use_bias=" + str(
|
||||
soup.particles[0].get_keras_params().get('use_bias'))
|
||||
for _ in range(exp.soup_life):
|
||||
soup.evolve()
|
||||
count(counters, soup, notable_nets)
|
||||
keras.backend.clear_session()
|
||||
|
||||
xs += [trains_per_selfattack]
|
||||
ys += [float(counters['fix_zero']) / float(exp.trials)]
|
||||
zs += [float(counters['fix_other']) / float(exp.trials)]
|
||||
all_names += [name]
|
||||
# xs: how many trains per self-attack from exp.trains_per_selfattack_values
|
||||
# ys: average amount of zero-fixpoints found
|
||||
# zs: average amount of non-zero fixpoints
|
||||
all_data += [{'xs':xs, 'ys':ys, 'zs':zs}]
|
||||
xs += [trains_per_selfattack]
|
||||
ys += [float(counters['fix_zero']) / float(exp.trials)]
|
||||
zs += [float(counters['fix_other']) / float(exp.trials)]
|
||||
all_names += [name]
|
||||
# xs: how many trains per self-attack from exp.trains_per_selfattack_values
|
||||
# ys: average amount of zero-fixpoints found
|
||||
# zs: average amount of non-zero fixpoints
|
||||
all_data += [{'xs': xs, 'ys': ys, 'zs': zs}]
|
||||
|
||||
exp.save(all_names=all_names)
|
||||
exp.save(all_data=all_data)
|
||||
for exp_id, name in enumerate(all_names):
|
||||
exp.log(all_names[exp_id])
|
||||
exp.log(all_data[exp_id])
|
||||
exp.log('\n')
|
||||
exp.save(all_names=all_names)
|
||||
exp.save(all_data=all_data)
|
||||
for exp_id, name in enumerate(all_names):
|
||||
exp.log(all_names[exp_id])
|
||||
exp.log(all_data[exp_id])
|
||||
exp.log('\n')
|
||||
|
Reference in New Issue
Block a user