added AggegratedNeuralNetwork and FixpointExperiment

This commit is contained in:
Thomas Gabor 2019-03-03 02:58:20 +01:00
parent 3b0953c741
commit 865e3c4f36
2 changed files with 157 additions and 48 deletions

View File

@ -18,6 +18,10 @@ class Experiment:
self.base_dir = os.path.realpath((os.path.dirname(this_file) + "/..")) + "/"
self.next_iteration = 0
self.log_messages = []
self.initialize_more()
def initialize_more(self):
pass
def __enter__(self):
self.dir = self.base_dir + "experiments/exp-" + str(self.experiment_name) + "-" + str(self.experiment_id) + "-" + str(self.next_iteration) + "/"

View File

@ -35,9 +35,19 @@ def are_weights_within(network_weights, lower_bound, upper_bound):
return False
return True
class NeuralNetwork:
@staticmethod
def weights_to_string(weights):
s = ""
for layer_id,layer in enumerate(weights):
for cell_id,cell in enumerate(layer):
s += "[ "
for weight_id,weight in enumerate(cell):
s += str(weight) + " "
s += "]"
s += "\n"
return s
def __init__(self, width, depth, **keras_params):
self.width = width
@ -45,12 +55,23 @@ class NeuralNetwork:
self.params = dict(epsilon=0.00000000000001)
self.keras_params = dict(activation='linear', use_bias=False)
self.keras_params.update(keras_params)
self.silent = True
def set_params(self, **kwargs):
def silence(self):
self.silent = True
return self
def unsilence(self):
self.silent = False
return self
def with_params(self, **kwargs):
self.params.update(kwargs)
return self
def set_keras_params(self, **kwargs):
self.keras_param.update(kwargs)
def with_keras_params(self, **kwargs):
self.keras_params.update(kwargs)
return self
def get_weights(self):
return self.model.get_weights()
@ -78,10 +99,13 @@ class NeuralNetwork:
epsilon = epsilon or self.params.get('epsilon')
return are_weights_within(self.get_weights(), -epsilon, epsilon)
def is_fixpoint(self, epsilon=None):
def is_fixpoint(self, degree=1, epsilon=None):
epsilon = epsilon or self.params.get('epsilon')
old_weights = self.get_weights()
new_weights = self.apply_to_network(self)
self.silence()
for _ in range(degree):
new_weights = self.apply_to_network(self)
self.unsilence()
if are_weights_diverged(new_weights):
return False
for layer_id,layer in enumerate(old_weights):
@ -93,15 +117,7 @@ class NeuralNetwork:
return True
def repr_weights(self):
s = ""
for layer_id,layer in enumerate(self.get_weights()):
for cell_id,cell in enumerate(layer):
s += "[ "
for weight_id,weight in enumerate(cell):
s += str(weight) + " "
s += "]"
s += "\n"
return s
return self.__class__.weights_to_string(self.get_weights())
def print_weights(self):
print(self.repr_weights())
@ -110,8 +126,8 @@ class NeuralNetwork:
class WeightwiseNeuralNetwork(NeuralNetwork):
def __init__(self, width, depth, **keras_params):
super().__init__(width, depth, **keras_params)
def __init__(self, width, depth, **kwargs):
super().__init__(width, depth, **kwargs)
self.model = Sequential()
self.model.add(Dense(units=width, input_dim=4, **self.keras_params))
for _ in range(depth-1):
@ -135,40 +151,129 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
normal_weight_id = normalize_id(weight_id, max_weight_id)
new_weight = self.apply(weight, normal_layer_id, normal_cell_id, normal_weight_id)
new_weights[layer_id][cell_id][weight_id] = new_weight
if self.params.get("print_all_weight_updates", False):
if self.params.get("print_all_weight_updates", False) and not self.silent:
print("updated old weight " + str(weight) + "\t @ (" + str(layer_id) + "," + str(cell_id) + "," + str(weight_id) + ") to new value " + str(new_weight) + "\t calling @ (" + str(normal_layer_id) + "," + str(normal_cell_id) + "," + str(normal_weight_id) + ")")
return new_weights
class AggregatingNeuralNetwork(NeuralNetwork):
@staticmethod
def aggregate_average(weights):
total = 0
count = 0
for weight in weights:
total += float(weight)
count += 1
return total / float(count)
@staticmethod
def deaggregate_identically(aggregate, amount):
return [aggregate for _ in range(amount)]
def __init__(self, aggregates, width, depth, **kwargs):
super().__init__(width, depth, **kwargs)
self.aggregates = aggregates
self.aggregator = self.params.get('aggregator', self.__class__.aggregate_average)
self.deaggregator = self.params.get('deaggregator', self.__class__.deaggregate_identically)
self.model = Sequential()
self.model.add(Dense(units=width, input_dim=self.aggregates, **self.keras_params))
for _ in range(depth-1):
self.model.add(Dense(units=width, **self.keras_params))
self.model.add(Dense(units=self.aggregates, **self.keras_params))
def get_amount_of_weights(self):
total_weights = 0
for layer_id,layer in enumerate(self.get_weights()):
for cell_id,cell in enumerate(layer):
for weight_id,weight in enumerate(cell):
total_weights += 1
return total_weights
def apply(self, *input):
stuff = np.transpose(np.array([[input[i]] for i in range(self.aggregates)]))
return self.model.predict(stuff)[0]
def apply_to_weights(self, old_weights):
# build aggregations from old_weights
collection_size = self.get_amount_of_weights() // self.aggregates
collections = []
next_collection = []
current_weight_id = 0
for layer_id,layer in enumerate(old_weights):
for cell_id,cell in enumerate(layer):
for weight_id,weight in enumerate(cell):
next_collection += [weight]
if (current_weight_id + 1) % collection_size == 0:
collections += [next_collection]
next_collection = []
current_weight_id += 1
collections[-1] += next_collection
leftovers = len(next_collection)
# call network
old_aggregations = [self.aggregator(collection) for collection in collections]
new_aggregations = self.apply(*old_aggregations)
# generate list of new weights
new_weights_list = []
for aggregation_id,aggregation in enumerate(new_aggregations):
if aggregation_id == self.aggregates - 1:
new_weights_list += self.deaggregator(aggregation, collection_size + leftovers)
else:
new_weights_list += self.deaggregator(aggregation, collection_size)
# write back new weights
new_weights = copy.deepcopy(old_weights)
current_weight_id = 0
for layer_id,layer in enumerate(new_weights):
for cell_id,cell in enumerate(layer):
for weight_id,weight in enumerate(cell):
new_weight = new_weights_list[current_weight_id]
new_weights[layer_id][cell_id][weight_id] = new_weight
current_weight_id += 1
# return results
if self.params.get("print_all_weight_updates", False) and not self.silent:
print("updated old weight aggregations " + str(old_aggregations))
print("to new weight aggregations " + str(new_aggregations))
print("resulting in network weights ...")
print(self.__class__.weights_to_string(new_weights))
return new_weights
class FixpointExperiment(Experiment):
def initialize_more(self):
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
self.interesting_fixpoints = []
def run_net(self, net, step_limit=100):
i = 0
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
net.self_attack()
i += 1
self.count(net)
def count(self, net):
if net.is_diverged():
self.counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
self.counters['fix_zero'] += 1
else:
self.counters['fix_other'] += 1
self.interesting_fixpoints.append(net)
self.log(net.repr_weights())
net.self_attack()
self.log(net.repr_weights())
elif net.is_fixpoint(2):
self.counters['fix_sec'] += 1
else:
self.counters['other'] += 1
if __name__ == '__main__':
with Experiment() as exp:
counts = dict(divergent=0, fix_zero=0, fix_other=0, other=0)
for run_id in tqdm(range(10)):
activation = 'linear'
net = WeightwiseNeuralNetwork(2, 2, activation='linear')
# net.set_params(print_all_weight_updates=True)
# net.model.summary()
with FixpointExperiment() as exp:
for run_id in tqdm(range(100)):
# net = WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear')
net = AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='linear').with_params(print_all_weight_updates=False)
exp.run_net(net, 100)
# net.print_weights()
# print()
# print(net.apply(1, 1, 1))
i = 0
while i < 100 and not net.is_diverged() and not net.is_fixpoint():
net.self_attack()
# net.print_weights()
# print()
i += 1
if net.is_diverged():
counts['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
counts['fix_zero'] += 1
else:
counts['fix_other'] += 1
exp.log(net.repr_weights())
net.self_attack()
exp.log(net.repr_weights())
else:
counts['other'] += 1
exp.log(counts)
exp.log(exp.counters)