diff --git a/functionalities_test.py b/functionalities_test.py index 13aa30c..a13606b 100644 --- a/functionalities_test.py +++ b/functionalities_test.py @@ -78,3 +78,18 @@ def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None): def changing_rate(x_new, x_old): return x_new - x_old + +def test_status(net: Net) -> Net: + + if is_divergent(net): + net.is_fixpoint = "divergent" + elif is_identity_function(net): # is default value + net.is_fixpoint = "identity_func" + elif is_zero_fixpoint(net): + net.is_fixpoint = "fix_zero" + elif is_secondary_fixpoint(net): + net.is_fixpoint = "fix_sec" + else: + net.is_fixpoint = "other_func" + + return net \ No newline at end of file diff --git a/journal_basins.py b/journal_basins.py index 8809f3b..df16f14 100644 --- a/journal_basins.py +++ b/journal_basins.py @@ -1,18 +1,21 @@ import os from pathlib import Path import pickle +from torch import mean from tqdm import tqdm import random import copy -from functionalities_test import is_identity_function +from functionalities_test import is_identity_function, test_status from network import Net from visualization import plot_3d_self_train, plot_loss import numpy as np from tabulate import tabulate from sklearn.metrics import mean_absolute_error as MAE from sklearn.metrics import mean_squared_error as MSE - +import pandas as pd +import seaborn as sns +from matplotlib import pyplot as plt def prng(): return random.random() @@ -120,8 +123,8 @@ class SpawnExperiment: self.spawn_and_continue() self.weights_evolution_3d_experiment() # self.visualize_loss() - self.distance_matrix = distance_matrix(self.nets) - self.parent_clone_distances = distance_from_parent(self.nets) + self.distance_matrix = distance_matrix(self.nets, print_it=False) + self.parent_clone_distances = distance_from_parent(self.nets, print_it=False) self.save() @@ -136,13 +139,13 @@ class SpawnExperiment: for _ in range(self.ST_steps): net.self_train(1, self.log_step_size, self.net_learning_rate) - # print(f"\nLast weight matrix (epoch: {self.epochs}):\n - # {net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}") self.nets.append(net) def spawn_and_continue(self, number_clones: int = None): number_clones = number_clones or self.nr_clones + df = pd.DataFrame(columns=['parent', 'MAE_pre','MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', 'status_post']) + # For every initial net {i} after populating (that is fixpoint after first epoch); for i in range(self.population_size): net = self.nets[i] @@ -168,27 +171,46 @@ class SpawnExperiment: clone = self.apply_noise(clone, rand_noise) clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history) clone.number_trained = copy.deepcopy(net.number_trained) + + # Pre Training distances (after noise application of course) + clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix()) + MAE_pre = MAE(net_target_data, clone_pre_weights) + MSE_pre = MSE(net_target_data, clone_pre_weights) + MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) - # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) - # and add to nets for plotting if they are fixpoints themselves; + # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) .. for _ in range(self.epochs - 1): for _ in range(self.ST_steps): - # soup Evolve clone.self_train(1, self.log_step_size, self.net_learning_rate) + + # Post Training distances for comparison + clone_post_weights = clone.create_target_weights(clone.input_weight_matrix()) + MAE_post = MAE(net_target_data, clone_post_weights) + MSE_post = MSE(net_target_data, clone_post_weights) + MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights) + + # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. + test_status(clone) if is_identity_function(clone): - input_data = clone.input_weight_matrix() - target_data = clone.create_target_weights(input_data) - print(f"Clone {j} (of net_{i}) is fixpoint. \nMSE(j,i): " - f"{MSE(net_target_data, target_data)}, \nMAE(j,i): {MAE(net_target_data, target_data)}\n") - self.nets.append(clone) + print(f"Clone {j} (of net_{i}) is fixpoint." + f"\nMSE({i},{j}): {MSE_post}" + f"\nMAE({i},{j}): {MAE_post}" + f"\nMIM({i},{j}): {MIM_post}\n") + self.nets.append(clone) + + df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, clone.is_fixpoint] # Finally take parent net {i} and finish it's training for comparison to clone development. for _ in range(self.epochs - 1): for _ in range(self.ST_steps): net.self_train(1, self.log_step_size, self.net_learning_rate) + net_weights_after = net.create_target_weights(net.input_weight_matrix()) + print(f"Parent net's distance to original position." + f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}" + f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}" + f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n") - else: - print("No fixpoints found.") + self.df = df def weights_evolution_3d_experiment(self): exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA" @@ -213,20 +235,21 @@ if __name__ == "__main__": # Define number of runs & name: ST_runs = 1 ST_runs_name = "test-27" - ST_steps = 2000 + ST_steps = 2500 ST_epochs = 2 ST_log_step_size = 10 # Define number of networks & their architecture - nr_clones = 50 + nr_clones = 5 ST_population_size = 1 ST_net_hidden_size = 2 ST_net_learning_rate = 0.04 ST_name_hash = random.getrandbits(32) print(f"Running the Spawn experiment:") - for noise_factor in [9]: - SpawnExperiment( + exp_list = [] + for noise_factor in range(2,5): + exp = SpawnExperiment( population_size=ST_population_size, log_step_size=ST_log_step_size, net_input_size=NET_INPUT_SIZE, @@ -237,5 +260,16 @@ if __name__ == "__main__": st_steps=ST_steps, nr_clones=nr_clones, noise=pow(10, -noise_factor), - directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}_10e-{noise_factor}' + directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'10e-{noise_factor}' ) + exp_list.append(exp) + + # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis + df = pd.concat([exp.df for exp in exp_list]) + sns.countplot(data=df, x="noise", hue="status_post") + plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png") + + # Catplot (either kind="point" or "box") that shows before-after training distances to parent + mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance') + sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False) + plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png") \ No newline at end of file diff --git a/journal_soup_basins.py b/journal_soup_basins.py new file mode 100644 index 0000000..c9e06ab --- /dev/null +++ b/journal_soup_basins.py @@ -0,0 +1,304 @@ +import os +from pathlib import Path +import pickle +from torch import mean + +from tqdm import tqdm +import random +import copy +from functionalities_test import is_identity_function, test_status, test_for_fixpoints +from network import Net +from visualization import plot_3d_self_train, plot_loss, plot_3d_soup +import numpy as np +from tabulate import tabulate +from sklearn.metrics import mean_absolute_error as MAE +from sklearn.metrics import mean_squared_error as MSE +import pandas as pd +import seaborn as sns +from matplotlib import pyplot as plt + + +def prng(): + return random.random() + + +def l1(tup): + a, b = tup + return abs(a - b) + + +def mean_invariate_manhattan_distance(x, y): + # One of these one-liners that might be smart or really dumb. Goal is to find pairwise + # distances of ascending values, ie. sum (abs(min1_X-min1_Y), abs(min2_X-min2Y) ...) / mean. + # Idea was to find weight sets that have same values but just in different positions, that would + # make this distance 0. + return np.mean(list(map(l1, zip(sorted(x.numpy()), sorted(y.numpy()))))) + + +def distance_matrix(nets, distance="MIM", print_it=True): + matrix = [[0 for _ in range(len(nets))] for _ in range(len(nets))] + for net in range(len(nets)): + weights = nets[net].input_weight_matrix()[:, 0] + for other_net in range(len(nets)): + other_weights = nets[other_net].input_weight_matrix()[:, 0] + if distance in ["MSE"]: + matrix[net][other_net] = MSE(weights, other_weights) + elif distance in ["MAE"]: + matrix[net][other_net] = MAE(weights, other_weights) + elif distance in ["MIM"]: + matrix[net][other_net] = mean_invariate_manhattan_distance(weights, other_weights) + + if print_it: + print(f"\nDistance matrix (all to all) [{distance}]:") + headers = [i.name for i in nets] + print(tabulate(matrix, showindex=headers, headers=headers, tablefmt='orgtbl')) + return matrix + + +def distance_from_parent(nets, distance="MIM", print_it=True): + list_of_matrices = [] + parents = list(filter(lambda x: "clone" not in x.name and is_identity_function(x), nets)) + distance_range = range(10) + for parent in parents: + parent_weights = parent.create_target_weights(parent.input_weight_matrix()) + clones = list(filter(lambda y: parent.name in y.name and parent.name != y.name, nets)) + matrix = [[0 for _ in distance_range] for _ in range(len(clones))] + + for dist in distance_range: + for idx, clone in enumerate(clones): + clone_weights = clone.create_target_weights(clone.input_weight_matrix()) + if distance in ["MSE"]: + matrix[idx][dist] = MSE(parent_weights, clone_weights) < pow(10, -dist) + elif distance in ["MAE"]: + matrix[idx][dist] = MAE(parent_weights, clone_weights) < pow(10, -dist) + elif distance in ["MIM"]: + matrix[idx][dist] = mean_invariate_manhattan_distance(parent_weights, clone_weights) < pow(10, + -dist) + + if print_it: + print(f"\nDistances from parent {parent.name} [{distance}]:") + col_headers = [str(f"10e-{d}") for d in distance_range] + row_headers = [str(f"clone_{i}") for i in range(len(clones))] + print(tabulate(matrix, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) + + list_of_matrices.append(matrix) + + return list_of_matrices + + +class SoupSpawnExperiment: + + @staticmethod + def apply_noise(network, noise: int): + """ Changing the weights of a network to values + noise """ + + for layer_id, layer_name in enumerate(network.state_dict()): + for line_id, line_values in enumerate(network.state_dict()[layer_name]): + for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]): + # network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise + if prng() < 0.5: + network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise + else: + network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise + + return network + + def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate, + epochs, st_steps, attack_chance, nr_clones, noise, directory) -> None: + self.population_size = population_size + self.log_step_size = log_step_size + self.net_input_size = net_input_size + self.net_hidden_size = net_hidden_size + self.net_out_size = net_out_size + self.net_learning_rate = net_learning_rate + self.epochs = epochs + self.ST_steps = st_steps + self.attack_chance = attack_chance + self.loss_history = [] + self.nr_clones = nr_clones + self.noise = noise or 10e-5 + print("\nNOISE:", self.noise) + + self.directory = Path(directory) + self.directory.mkdir(parents=True, exist_ok=True) + + # Populating environment & evolving entities + self.nets = [] + self.populate_environment() + self.evolve() + + self.spawn_and_continue() + self.weights_evolution_3d_experiment() + # self.visualize_loss() + self.distance_matrix = distance_matrix(self.nets, print_it=False) + self.parent_clone_distances = distance_from_parent(self.nets, print_it=False) + + self.save() + + def populate_environment(self): + loop_population_size = tqdm(range(self.population_size)) + for i in loop_population_size: + loop_population_size.set_description("Populating experiment %s" % i) + + net_name = f"soup_net_{str(i)}" + net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name) + + self.nets.append(net) + + def evolve(self): + loop_epochs = tqdm(range(self.epochs)) + for i in loop_epochs: + loop_epochs.set_description("Evolving soup %s" % i) + + # A network attacking another network with a given percentage + if random.randint(1, 100) <= self.attack_chance: + random_net1, random_net2 = random.sample(range(self.population_size), 2) + random_net1 = self.nets[random_net1] + random_net2 = self.nets[random_net2] + print(f"\n Attack: {random_net1.name} -> {random_net2.name}") + random_net1.attack(random_net2) + + # Self-training each network in the population + for j in range(self.population_size): + net = self.nets[j] + + for _ in range(self.ST_steps): + net.self_train(1, self.log_step_size, self.net_learning_rate) + + def spawn_and_continue(self, number_clones: int = None): + number_clones = number_clones or self.nr_clones + + df = pd.DataFrame( + columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', + 'status_post']) + + # For every initial net {i} after populating (that is fixpoint after first epoch); + for i in range(self.population_size): + net = self.nets[i] + # We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to + # to see full trajectory (but the clones will be very hard to see). + # Make one target to compare distances to clones later when they have trained. + net.start_time = self.ST_steps - 150 + net_input_data = net.input_weight_matrix() + net_target_data = net.create_target_weights(net_input_data) + + if is_identity_function(net): + print(f"\nNet {i} is fixpoint") + + # Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly; + # To plot clones starting after first epoch (z=ST_steps), set that as start_time! + # To make sure PCA will plot the same trajectory up until this point, we clone the + # parent-net's weight history as well. + for j in range(number_clones): + clone = Net(net.input_size, net.hidden_size, net.out_size, + f"ST_net_{str(i)}_clone_{str(j)}", start_time=self.ST_steps) + clone.load_state_dict(copy.deepcopy(net.state_dict())) + rand_noise = prng() * self.noise + clone = self.apply_noise(clone, rand_noise) + clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history) + clone.number_trained = copy.deepcopy(net.number_trained) + + # Pre Training distances (after noise application of course) + clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix()) + MAE_pre = MAE(net_target_data, clone_pre_weights) + MSE_pre = MSE(net_target_data, clone_pre_weights) + MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) + + # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) .. + for _ in range(self.epochs - 1): + for _ in range(self.ST_steps): + clone.self_train(1, self.log_step_size, self.net_learning_rate) + + # Post Training distances for comparison + clone_post_weights = clone.create_target_weights(clone.input_weight_matrix()) + MAE_post = MAE(net_target_data, clone_post_weights) + MSE_post = MSE(net_target_data, clone_post_weights) + MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights) + + # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. + test_status(clone) + if is_identity_function(clone): + print(f"Clone {j} (of net_{i}) is fixpoint." + f"\nMSE({i},{j}): {MSE_post}" + f"\nMAE({i},{j}): {MAE_post}" + f"\nMIM({i},{j}): {MIM_post}\n") + self.nets.append(clone) + + df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, + clone.is_fixpoint] + + # Finally take parent net {i} and finish it's training for comparison to clone development. + for _ in range(self.epochs - 1): + for _ in range(self.ST_steps): + net.self_train(1, self.log_step_size, self.net_learning_rate) + net_weights_after = net.create_target_weights(net.input_weight_matrix()) + print(f"Parent net's distance to original position." + f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}" + f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}" + f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n") + + self.df = df + + def weights_evolution_3d_experiment(self): + exp_name = f"soup_basins_{str(len(self.nets))}_nets_3d_weights_PCA" + return plot_3d_soup(self.nets, exp_name, self.directory) + + def visualize_loss(self): + for i in range(len(self.nets)): + net_loss_history = self.nets[i].loss_history + self.loss_history.append(net_loss_history) + plot_loss(self.loss_history, self.directory) + + def save(self): + pickle.dump(self, open(f"{self.directory}/experiment_pickle.p", "wb")) + print(f"\nSaved experiment to {self.directory}.") + + +if __name__ == "__main__": + + NET_INPUT_SIZE = 4 + NET_OUT_SIZE = 1 + + # Define number of runs & name: + ST_runs = 1 + ST_runs_name = "test-27" + soup_ST_steps = 2500 + soup_epochs = 2 + soup_log_step_size = 10 + + # Define number of networks & their architecture + nr_clones = 15 + soup_population_size = 2 + soup_net_hidden_size = 2 + soup_net_learning_rate = 0.04 + soup_attack_chance = 10 + soup_name_hash = random.getrandbits(32) + + print(f"Running the Soup-Spawn experiment:") + exp_list = [] + for noise_factor in range(2, 5): + exp = SoupSpawnExperiment( + population_size=soup_population_size, + log_step_size=soup_log_step_size, + net_input_size=NET_INPUT_SIZE, + net_hidden_size=soup_net_hidden_size, + net_out_size=NET_OUT_SIZE, + net_learning_rate=soup_net_learning_rate, + epochs=soup_epochs, + st_steps=soup_ST_steps, + attack_chance=soup_attack_chance, + nr_clones=nr_clones, + noise=pow(10, -noise_factor), + directory=Path('output') / 'soup_spawn_basin' / f'{soup_name_hash}' / f'10e-{noise_factor}' + ) + exp_list.append(exp) + + # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis + df = pd.concat([exp.df for exp in exp_list]) + sns.countplot(data=df, x="noise", hue="status_post") + plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/fixpoint_status_countplot.png") + + # Catplot (either kind="point" or "box") that shows before-after training distances to parent + mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance') + sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False) + plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/clone_distance_catplot.png") diff --git a/journal_soup_robustness.py b/journal_soup_robustness.py new file mode 100644 index 0000000..cdcf6e7 --- /dev/null +++ b/journal_soup_robustness.py @@ -0,0 +1,266 @@ +import copy +import random +import os.path +import pickle +from pathlib import Path +from typing import Union + +import numpy as np +import pandas as pd +import seaborn as sns +from tqdm import tqdm +from matplotlib import pyplot as plt +from torch.nn import functional as F +from tabulate import tabulate + +from experiments.helpers import check_folder, summary_fixpoint_percentage, summary_fixpoint_experiment +from functionalities_test import test_for_fixpoints, is_zero_fixpoint, is_divergent, is_identity_function +from network import Net +from visualization import plot_loss, bar_chart_fixpoints, plot_3d_soup, line_chart_fixpoints + + +def prng(): + return random.random() + + +class SoupRobustnessExperiment: + + @staticmethod + def apply_noise(network, noise: int): + """ Changing the weights of a network to values + noise """ + for layer_id, layer_name in enumerate(network.state_dict()): + for line_id, line_values in enumerate(network.state_dict()[layer_name]): + for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]): + # network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise + if prng() < 0.5: + network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise + else: + network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise + + return network + + def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, attack_chance, + train_nets, ST_steps, epochs, log_step_size, directory: Union[str, Path]): + super().__init__() + self.population_size = population_size + + self.net_input_size = net_i_size + self.net_hidden_size = net_h_size + self.net_out_size = net_o_size + self.net_learning_rate = learning_rate + self.attack_chance = attack_chance + self.train_nets = train_nets + # self.SA_steps = SA_steps + self.ST_steps = ST_steps + self.epochs = epochs + self.log_step_size = log_step_size + + self.loss_history = [] + + self.fixpoint_counters = { + "identity_func": 0, + "divergent": 0, + "fix_zero": 0, + "fix_weak": 0, + "fix_sec": 0, + "other_func": 0 + } + # is used for keeping track of the amount of fixpoints in % + self.fixpoint_counters_history = [] + self.id_functions = [] + + self.directory = Path(directory) + self.directory.mkdir(parents=True, exist_ok=True) + + self.population = [] + self.populate_environment() + + self.evolve() + self.fixpoint_percentage() + self.weights_evolution_3d_experiment() + self.count_fixpoints() + self.visualize_loss() + + self.time_to_vergence, self.time_as_fixpoint = self.test_robustness() + + def populate_environment(self): + loop_population_size = tqdm(range(self.population_size)) + for i in tqdm(range(self.population_size)): + loop_population_size.set_description("Populating soup experiment %s" % i) + + net_name = f"soup_network_{i}" + net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name) + self.population.append(net) + + def evolve(self): + """ Evolving consists of attacking & self-training. """ + + loop_epochs = tqdm(range(self.epochs)) + for i in loop_epochs: + loop_epochs.set_description("Evolving soup %s" % i) + + # A network attacking another network with a given percentage + if random.randint(1, 100) <= self.attack_chance: + random_net1, random_net2 = random.sample(range(self.population_size), 2) + random_net1 = self.population[random_net1] + random_net2 = self.population[random_net2] + print(f"\n Attack: {random_net1.name} -> {random_net2.name}") + random_net1.attack(random_net2) + + # Self-training each network in the population + for j in range(self.population_size): + net = self.population[j] + + for _ in range(self.ST_steps): + net.self_train(1, self.log_step_size, self.net_learning_rate) + + # Testing for fixpoints after each batch of ST steps to see relevant data + if i % self.ST_steps == 0: + test_for_fixpoints(self.fixpoint_counters, self.population) + fixpoints_percentage = round(self.fixpoint_counters["identity_func"] / self.population_size, 1) + self.fixpoint_counters_history.append(fixpoints_percentage) + + # Resetting the fixpoint counter. Last iteration not to be reset - + # it is important for the bar_chart_fixpoints(). + if i < self.epochs: + self.reset_fixpoint_counters() + + def test_robustness(self, print_it=True, noise_levels=10, seeds=10): + # assert (len(self.id_functions) == 1 and seeds > 1) or (len(self.id_functions) > 1 and seeds == 1) + is_synthetic = True if len(self.id_functions) > 1 and seeds == 1 else False + avg_time_to_vergence = [[0 for _ in range(noise_levels)] for _ in + range(seeds if is_synthetic else len(self.id_functions))] + avg_time_as_fixpoint = [[0 for _ in range(noise_levels)] for _ in + range(seeds if is_synthetic else len(self.id_functions))] + row_headers = [] + data_pos = 0 + # This checks wether to use synthetic setting with multiple seeds + # or multi network settings with a singlee seed + + df = pd.DataFrame(columns=['seed', 'noise_level', 'application_step', 'absolute_loss']) + for i, fixpoint in enumerate(self.id_functions): # 1 / n + row_headers.append(fixpoint.name) + for seed in range(seeds): # n / 1 + for noise_level in range(noise_levels): + self_application_steps = 1 + clone = Net(fixpoint.input_size, fixpoint.hidden_size, fixpoint.out_size, + f"{fixpoint.name}_clone_noise10e-{noise_level}") + clone.load_state_dict(copy.deepcopy(fixpoint.state_dict())) + rand_noise = prng() * pow(10, -noise_level) # n / 1 + clone = self.apply_noise(clone, rand_noise) + + while not is_zero_fixpoint(clone) and not is_divergent(clone): + if is_identity_function(clone): + avg_time_as_fixpoint[i][noise_level] += 1 + + # -> before + clone_weight_pre_application = clone.input_weight_matrix() + target_data_pre_application = clone.create_target_weights(clone_weight_pre_application) + + clone.self_application(1, self.log_step_size) + avg_time_to_vergence[i][noise_level] += 1 + # -> after + clone_weight_post_application = clone.input_weight_matrix() + target_data_post_application = clone.create_target_weights(clone_weight_post_application) + + absolute_loss = F.l1_loss(target_data_pre_application, target_data_post_application).item() + + setting = i if is_synthetic else seed + + df.loc[data_pos] = [setting, noise_level, self_application_steps, absolute_loss] + data_pos += 1 + self_application_steps += 1 + + # calculate the average: + df = df.replace([np.inf, -np.inf], np.nan) + df = df.dropna() + # sns.set(rc={'figure.figsize': (10, 50)}) + bx = sns.catplot(data=df[df['absolute_loss'] < 1], y='absolute_loss', x='application_step', kind='box', + col='noise_level', col_wrap=3, showfliers=False) + directory = Path('output') / 'robustness' + filename = f"absolute_loss_perapplication_boxplot_grid.png" + filepath = directory / filename + + plt.savefig(str(filepath)) + + if print_it: + col_headers = [str(f"10e-{d}") for d in range(noise_levels)] + + print(f"\nAppplications steps until divergence / zero: ") + print(tabulate(avg_time_to_vergence, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) + + print(f"\nTime as fixpoint: ") + print(tabulate(avg_time_as_fixpoint, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) + + return avg_time_as_fixpoint, avg_time_to_vergence + + def weights_evolution_3d_experiment(self): + exp_name = f"soup_{self.population_size}_nets_{self.ST_steps}_training_{self.epochs}_epochs" + return plot_3d_soup(self.population, exp_name, self.directory) + + def count_fixpoints(self): + self.id_functions = test_for_fixpoints(self.fixpoint_counters, self.population) + exp_details = f"Evolution steps: {self.epochs} epochs" + bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory, self.net_learning_rate, + exp_details) + + def fixpoint_percentage(self): + runs = self.epochs / self.ST_steps + SA_steps = None + line_chart_fixpoints(self.fixpoint_counters_history, runs, self.ST_steps, SA_steps, self.directory, + self.population_size) + + def visualize_loss(self): + for i in range(len(self.population)): + net_loss_history = self.population[i].loss_history + self.loss_history.append(net_loss_history) + + plot_loss(self.loss_history, self.directory) + + def reset_fixpoint_counters(self): + self.fixpoint_counters = { + "identity_func": 0, + "divergent": 0, + "fix_zero": 0, + "fix_weak": 0, + "fix_sec": 0, + "other_func": 0 + } + + +if __name__ == "__main__": + NET_INPUT_SIZE = 4 + NET_OUT_SIZE = 1 + + soup_epochs = 100 + soup_log_step_size = 5 + soup_ST_steps = 20 + # soup_SA_steps = 10 + + # Define number of networks & their architecture + soup_population_size = 20 + soup_net_hidden_size = 2 + soup_net_learning_rate = 0.04 + + # soup_attack_chance in % + soup_attack_chance = 10 + + # not used yet: soup_train_nets has 3 possible values "no", "before_SA", "after_SA". + soup_train_nets = "no" + soup_name_hash = random.getrandbits(32) + soup_synthetic = True + + print(f"Running the robustness comparison experiment:") + SoupRobustnessExperiment( + population_size=soup_population_size, + net_i_size=NET_INPUT_SIZE, + net_h_size=soup_net_hidden_size, + net_o_size=NET_OUT_SIZE, + learning_rate=soup_net_learning_rate, + attack_chance=soup_attack_chance, + train_nets=soup_train_nets, + ST_steps=soup_ST_steps, + epochs=soup_epochs, + log_step_size=soup_log_step_size, + directory=Path('output') / 'robustness' / f'{soup_name_hash}' + ) \ No newline at end of file