sparse meta networt
This commit is contained in:
181
sparse_net.py
Normal file
181
sparse_net.py
Normal file
@ -0,0 +1,181 @@
|
||||
from network import Net
|
||||
from typing import List
|
||||
from functionalities_test import is_identity_function
|
||||
from tqdm import tqdm,trange
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import torch
|
||||
from torch.nn import Flatten
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torchvision.datasets import MNIST
|
||||
from torchvision.transforms import ToTensor, Compose, Resize
|
||||
|
||||
|
||||
class SparseLayer():
|
||||
def __init__(self, nr_nets, interface=5, depth=3, width=2, out=1):
|
||||
self.nr_nets = nr_nets
|
||||
self.interface_dim = interface
|
||||
self.depth_dim = depth
|
||||
self.hidden_dim = width
|
||||
self.out_dim = out
|
||||
self.dummy_net = Net(self.interface_dim, self.hidden_dim, self.out_dim)
|
||||
|
||||
self.sparse_sub_layer = []
|
||||
self.weights = []
|
||||
for layer_id in range(depth):
|
||||
layer, weights = self.coo_sparse_layer(layer_id)
|
||||
self.sparse_sub_layer.append(layer)
|
||||
self.weights.append(weights)
|
||||
|
||||
def coo_sparse_layer(self, layer_id):
|
||||
layer_shape = list(self.dummy_net.parameters())[layer_id].shape
|
||||
#print(layer_shape) #(out_cells, in_cells) -> (2,5), (2,2), (1,2)
|
||||
|
||||
sparse_diagonal = np.eye(self.nr_nets).repeat(layer_shape[0], axis=-2).repeat(layer_shape[1], axis=-1)
|
||||
indices = np.argwhere(sparse_diagonal == 1).T
|
||||
values = torch.nn.Parameter(torch.randn((self.nr_nets * (layer_shape[0]*layer_shape[1]) )))
|
||||
#values = torch.randn((self.nr_nets * layer_shape[0]*layer_shape[1] ))
|
||||
s = torch.sparse_coo_tensor(indices, values, sparse_diagonal.shape, requires_grad=True)
|
||||
print(f"L{layer_id}:", s.shape)
|
||||
return s, values
|
||||
|
||||
def get_self_train_inputs_and_targets(self):
|
||||
encoding_matrix, mask = self.dummy_net._weight_pos_enc
|
||||
|
||||
# view weights of each sublayer in equal chunks, each column representing weights of one selfrepNN
|
||||
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2 and first hidden*out weights of layer3 = first net
|
||||
weights = [layer.view(-1, int(len(layer)/self.nr_nets)) for layer in self.weights] #[nr_layers*[nr_net*nr_weights_layer_i]]
|
||||
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1,1) for i in range(self.nr_nets)] #[nr_net*[nr_weights]]
|
||||
inputs = torch.hstack([encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask) for i in range(self.nr_nets)]) #(16, 25)
|
||||
targets = torch.hstack(weights_per_net)
|
||||
return inputs.T, targets.T
|
||||
|
||||
def __call__(self, x):
|
||||
X1 = torch.sparse.mm(self.sparse_sub_layer[0], x)
|
||||
#print("X1", X1.shape)
|
||||
|
||||
X2 = torch.sparse.mm(self.sparse_sub_layer[1], X1)
|
||||
#print("X2", X2.shape)
|
||||
|
||||
X3 = torch.sparse.mm(self.sparse_sub_layer[2], X2)
|
||||
#print("X3", X3.shape)
|
||||
|
||||
return X3
|
||||
|
||||
|
||||
def test_sparse_layer():
|
||||
net = SparseLayer(500) #50 parallel nets
|
||||
loss_fn = torch.nn.MSELoss(reduction="sum")
|
||||
optimizer = torch.optim.SGD([weight for weight in net.weights], lr=0.004, momentum=0.9)
|
||||
#optimizer = torch.optim.SGD([layer for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
||||
|
||||
for train_iteration in trange(1000):
|
||||
optimizer.zero_grad()
|
||||
X,Y = net.get_self_train_inputs_and_targets()
|
||||
out = net(X)
|
||||
|
||||
loss = loss_fn(out, Y)
|
||||
|
||||
# print("X:", X.shape, "Y:", Y.shape)
|
||||
# print("OUT", out.shape)
|
||||
# print("LOSS", loss.item())
|
||||
|
||||
loss.backward(retain_graph=True)
|
||||
optimizer.step()
|
||||
|
||||
epsilon=pow(10, -5)
|
||||
# is each of the networks self-replicating?
|
||||
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def embed_batch(x, repeat_dim):
|
||||
# x of shape (batchsize, flat_img_dim)
|
||||
x = x.unsqueeze(-1) #(batchsize, flat_img_dim, 1)
|
||||
return torch.cat( (torch.zeros( x.shape[0], x.shape[1], 4), x), dim=2).repeat(1,1,repeat_dim) #(batchsize, flat_img_dim, encoding_dim*repeat_dim)
|
||||
|
||||
def embed_vector(x, repeat_dim):
|
||||
# x of shape [flat_img_dim]
|
||||
x = x.unsqueeze(-1) #(flat_img_dim, 1)
|
||||
return torch.cat( (torch.zeros( x.shape[0], 4), x), dim=1).repeat(1,repeat_dim) #(flat_img_dim, encoding_dim*repeat_dim)
|
||||
|
||||
class SparseNetwork():
|
||||
def __init__(self, input_dim, depth, width, out):
|
||||
self.input_dim = input_dim
|
||||
self.depth_dim = depth
|
||||
self.hidden_dim = width
|
||||
self.out_dim = out
|
||||
self.sparse_layers = []
|
||||
self.sparse_layers.append( SparseLayer( self.input_dim * self.hidden_dim ))
|
||||
self.sparse_layers.extend([ SparseLayer( self.hidden_dim * self.hidden_dim ) for layer_idx in range(self.depth_dim - 2)])
|
||||
self.sparse_layers.append( SparseLayer( self.hidden_dim * self.out_dim ))
|
||||
|
||||
def __call__(self, x):
|
||||
|
||||
for sparse_layer in self.sparse_layers[:-1]:
|
||||
# batch pass (one by one, sparse bmm doesn't support grad)
|
||||
if len(x.shape) > 1:
|
||||
embedded_inpt = embed_batch(x, sparse_layer.nr_nets)
|
||||
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(self.hidden_dim, x.shape[1]).sum(dim=1) for inpt in embedded_inpt]) #[batchsize, hidden*inpt_dim, feature_dim]
|
||||
# vector
|
||||
else:
|
||||
embedded_inpt = embed_vector(x, sparse_layer.nr_nets)
|
||||
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(self.hidden_dim, x.shape[1]).sum(dim=1)
|
||||
print("out", x.shape)
|
||||
|
||||
# output layer
|
||||
sparse_layer = self.sparse_layers[-1]
|
||||
if len(x.shape) > 1:
|
||||
embedded_inpt = embed_batch(x, sparse_layer.nr_nets)
|
||||
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(self.out_dim, x.shape[1]).sum(dim=1) for inpt in embedded_inpt]) #[batchsize, hidden*inpt_dim, feature_dim]
|
||||
else:
|
||||
embedded_inpt = embed_vector(x, sparse_layer.nr_nets)
|
||||
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(self.out_dim, x.shape[1]).sum(dim=1)
|
||||
print("out", x.shape)
|
||||
return x
|
||||
|
||||
|
||||
def test_sparse_net():
|
||||
utility_transforms = Compose([ Resize((10, 10)), ToTensor(), Flatten(start_dim=0)])
|
||||
data_path = Path('data')
|
||||
WORKER = 8
|
||||
BATCHSIZE = 10
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
dataset = MNIST(str(data_path), transform=utility_transforms)
|
||||
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||
|
||||
data_dim = np.prod(dataset[0][0].shape)
|
||||
metanet = SparseNetwork(data_dim, depth=3, width=5, out=10)
|
||||
batchx, batchy = next(iter(d))
|
||||
batchx.shape, batchy.shape
|
||||
metanet(batchx)
|
||||
|
||||
|
||||
def test_manual_for_loop():
|
||||
nr_nets = 500
|
||||
nets = [Net(5,2,1) for _ in range(nr_nets)]
|
||||
loss_fn = torch.nn.MSELoss(reduction="sum")
|
||||
rounds = 1000
|
||||
|
||||
for net in tqdm(nets):
|
||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
|
||||
for i in range(rounds):
|
||||
optimizer.zero_grad()
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
output = net(input_data)
|
||||
loss = loss_fn(output, target_data)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
sum([is_identity_function(net) for net in nets])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sparse_layer()
|
||||
test_sparse_net()
|
||||
#for comparison
|
||||
test_manual_for_loop()
|
Reference in New Issue
Block a user