some refactoring
This commit is contained in:
parent
19e4ed65f9
commit
751c2480fa
227
code/network.py
227
code/network.py
@ -7,79 +7,13 @@ from tqdm import tqdm
|
||||
from keras.models import Sequential
|
||||
from keras.layers import SimpleRNN, Dense
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
|
||||
# Supress warnings and info messages
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
|
||||
|
||||
def normalize_id(value, norm):
|
||||
if norm > 1:
|
||||
return float(value) / float(norm)
|
||||
else:
|
||||
return float(value)
|
||||
|
||||
|
||||
def are_weights_diverged(network_weights):
|
||||
for layer_id, layer in enumerate(network_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
if math.isnan(weight):
|
||||
return True
|
||||
if math.isinf(weight):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def are_weights_within(network_weights, lower_bound, upper_bound):
|
||||
for layer_id, layer in enumerate(network_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
if not (lower_bound <= weight <= upper_bound):
|
||||
return False
|
||||
return True
|
||||
|
||||
class PrintingObject():
|
||||
|
||||
class SilenceSignal():
|
||||
def __init__(self, obj, value):
|
||||
self.obj = obj
|
||||
self.new_silent = value
|
||||
def __enter__(self):
|
||||
self.old_silent = self.obj.get_silence()
|
||||
self.obj.set_silence(self.new_silent)
|
||||
def __exit__(self, exception_type, exception_value, traceback):
|
||||
self.obj.set_silence(self.old_silent)
|
||||
|
||||
def __init__(self):
|
||||
self.silent = True
|
||||
|
||||
def is_silent(self):
|
||||
return self.silent
|
||||
|
||||
def get_silence(self):
|
||||
return self.is_silent()
|
||||
|
||||
def set_silence(self, value=True):
|
||||
self.silent = value
|
||||
return self
|
||||
|
||||
def unset_silence(self):
|
||||
self.silent = False
|
||||
return self
|
||||
|
||||
def with_silence(self, value=True):
|
||||
self.set_silence(value)
|
||||
return self
|
||||
|
||||
def silence(self, value=True):
|
||||
return self.__class__.SilenceSignal(self, value)
|
||||
|
||||
def _print(self, *args, **kwargs):
|
||||
if not self.silent:
|
||||
print(*args, **kwargs)
|
||||
|
||||
|
||||
class NeuralNetwork(PrintingObject):
|
||||
|
||||
@staticmethod
|
||||
@ -94,6 +28,38 @@ class NeuralNetwork(PrintingObject):
|
||||
s += "\n"
|
||||
return s
|
||||
|
||||
@staticmethod
|
||||
def are_weights_diverged(network_weights):
|
||||
for layer_id, layer in enumerate(network_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
if math.isnan(weight):
|
||||
return True
|
||||
if math.isinf(weight):
|
||||
return True
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def are_weights_within(network_weights, lower_bound, upper_bound):
|
||||
for layer_id, layer in enumerate(network_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
if not (lower_bound <= weight <= upper_bound):
|
||||
return False
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def fill_weights(old_weights, new_weights_list):
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
current_weight_id = 0
|
||||
for layer_id, layer in enumerate(new_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
new_weight = new_weights_list[current_weight_id]
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
current_weight_id += 1
|
||||
return new_weights
|
||||
|
||||
def __init__(self, **params):
|
||||
super().__init__()
|
||||
self.model = Sequential()
|
||||
@ -125,8 +91,7 @@ class NeuralNetwork(PrintingObject):
|
||||
return self.get_model().set_weights(new_weights)
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
# placeholder, overwrite in subclass
|
||||
return old_weights
|
||||
raise NotImplementedException
|
||||
|
||||
def apply_to_network(self, other_network):
|
||||
new_weights = self.apply_to_weights(other_network.get_weights())
|
||||
@ -150,11 +115,11 @@ class NeuralNetwork(PrintingObject):
|
||||
return new_me.self_attack(iterations)
|
||||
|
||||
def is_diverged(self):
|
||||
return are_weights_diverged(self.get_weights())
|
||||
return NeuralNetwork.are_weights_diverged(self.get_weights())
|
||||
|
||||
def is_zero(self, epsilon=None):
|
||||
epsilon = epsilon or self.params.get('epsilon')
|
||||
return are_weights_within(self.get_weights(), -epsilon, epsilon)
|
||||
return NeuralNetwork.are_weights_within(self.get_weights(), -epsilon, epsilon)
|
||||
|
||||
def is_fixpoint(self, degree=1, epsilon=None):
|
||||
assert degree >= 1, "degree must be >= 1"
|
||||
@ -165,7 +130,7 @@ class NeuralNetwork(PrintingObject):
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_weights(new_weights)
|
||||
|
||||
if are_weights_diverged(new_weights):
|
||||
if NeuralNetwork.are_weights_diverged(new_weights):
|
||||
return False
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
@ -184,6 +149,13 @@ class NeuralNetwork(PrintingObject):
|
||||
|
||||
class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
|
||||
@staticmethod
|
||||
def normalize_id(value, norm):
|
||||
if norm > 1:
|
||||
return float(value) / float(norm)
|
||||
else:
|
||||
return float(value)
|
||||
|
||||
def __init__(self, width, depth, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.width = width
|
||||
@ -197,45 +169,56 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
stuff = np.transpose(np.array([[inputs[0]], [inputs[1]], [inputs[2]], [inputs[3]]]))
|
||||
return self.model.predict(stuff)[0][0]
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
@classmethod
|
||||
def compute_all_duplex_weight_points(cls, old_weights):
|
||||
points = []
|
||||
normal_points = []
|
||||
max_layer_id = len(old_weights) - 1
|
||||
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
max_cell_id = len(layer) - 1
|
||||
|
||||
for cell_id, cell in enumerate(layer):
|
||||
max_weight_id = len(cell) - 1
|
||||
|
||||
for weight_id, weight in enumerate(cell):
|
||||
normal_layer_id = normalize_id(layer_id, max_layer_id)
|
||||
normal_cell_id = normalize_id(cell_id, max_cell_id)
|
||||
normal_weight_id = normalize_id(weight_id, max_weight_id)
|
||||
normal_layer_id = cls.normalize_id(layer_id, max_layer_id)
|
||||
normal_cell_id = cls.normalize_id(cell_id, max_cell_id)
|
||||
normal_weight_id = cls.normalize_id(weight_id, max_weight_id)
|
||||
|
||||
new_weight = self.apply(weight, normal_layer_id, normal_cell_id, normal_weight_id)
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
points += [[weight, layer_id, cell_id, weight_id]]
|
||||
normal_points += [[weight, normal_layer_id, normal_cell_id, normal_weight_id]]
|
||||
return points, normal_points
|
||||
|
||||
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
||||
print("updated old weight {weight}\t @ ({layer},{cell},{weight_id}) "
|
||||
"to new value {new_weight}\t calling @ ({normal_layer},{normal_cell},{normal_weight_id})").format(
|
||||
weight=weight, layer=layer_id, cell=cell_id, weight_id=weight_id, new_weight=new_weight,
|
||||
@classmethod
|
||||
def compute_all_weight_points(cls, all_weights):
|
||||
return cls.compute_all_duplex_weight_points(all_weights)[0]
|
||||
|
||||
@classmethod
|
||||
def compute_all_normal_weight_points(cls, all_weights):
|
||||
return cls.compute_all_duplex_weight_points(all_weights)[1]
|
||||
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
new_weights = copy.deepcopy(self.get_weights())
|
||||
for (weight_point, normal_weight_point) in zip(*self.__class__.compute_all_duplex_weight_points(old_weights)):
|
||||
weight, layer_id, cell_id, weight_id = weight_point
|
||||
_, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point
|
||||
|
||||
new_weight = self.apply(*normal_weight_point)
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
|
||||
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
||||
print("updated old weight {weight}\t @ ({layer},{cell},{weight_id}) "
|
||||
"to new value {new_weight}\t calling @ ({normal_layer},{normal_cell},{normal_weight_id})").format(
|
||||
weight=weight, layer=layer_id, cell=cell_id, weight_id=weight_id, new_weight=new_weight,
|
||||
normal_layer=normal_layer_id, normal_cell=normal_cell_id, normal_weight_id=normal_weight_id)
|
||||
return new_weights
|
||||
|
||||
def compute_samples(self):
|
||||
samples = []
|
||||
new_weights = copy.deepcopy(self.get_weights())
|
||||
max_layer_id = len(self.get_weights()) - 1
|
||||
for layer_id, layer in enumerate(self.get_weights()):
|
||||
max_cell_id = len(layer) - 1
|
||||
for cell_id, cell in enumerate(layer):
|
||||
max_weight_id = len(cell) - 1
|
||||
for weight_id, weight in enumerate(cell):
|
||||
normal_layer_id = normalize_id(layer_id, max_layer_id)
|
||||
normal_cell_id = normalize_id(cell_id, max_cell_id)
|
||||
normal_weight_id = normalize_id(weight_id, max_weight_id)
|
||||
sample = np.transpose(np.array([[weight], [normal_layer_id], [normal_cell_id], [normal_weight_id]]))
|
||||
samples += [sample[0]]
|
||||
for normal_weight_point in self.__class__.compute_all_normal_weight_points(self.get_weights()):
|
||||
weight, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point
|
||||
|
||||
sample = np.transpose(np.array([[weight], [normal_layer_id], [normal_cell_id], [normal_weight_id]]))
|
||||
samples += [sample[0]]
|
||||
samples_array = np.asarray(samples)
|
||||
return samples_array, samples_array[:, 0]
|
||||
|
||||
@ -307,19 +290,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
def apply_to_weights(self, old_weights):
|
||||
# build aggregations from old_weights
|
||||
collection_size = self.get_amount_of_weights() // self.aggregates
|
||||
collections = []
|
||||
next_collection = []
|
||||
current_weight_id = 0
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
next_collection += [weight]
|
||||
if (current_weight_id + 1) % collection_size == 0:
|
||||
collections += [next_collection]
|
||||
next_collection = []
|
||||
current_weight_id += 1
|
||||
collections[-1] += next_collection
|
||||
leftovers = len(next_collection)
|
||||
collections, leftovers = self.__class__.collect_weights(old_weights, collection_size)
|
||||
|
||||
# call network
|
||||
old_aggregations = [self.get_aggregator()(collection) for collection in collections]
|
||||
@ -335,14 +306,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
new_weights_list = self.get_shuffler()(new_weights_list)
|
||||
|
||||
# write back new weights
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
current_weight_id = 0
|
||||
for layer_id, layer in enumerate(new_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
new_weight = new_weights_list[current_weight_id]
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
current_weight_id += 1
|
||||
new_weights = self.__class__.fill_weights(old_weights, new_weights_list)
|
||||
|
||||
# return results
|
||||
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
||||
@ -383,25 +347,6 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
sample = np.transpose(np.array([[aggregations[i]] for i in range(self.aggregates)]))
|
||||
return [sample], [sample]
|
||||
|
||||
def is_fixpoint(self, degree=1, epsilon=None):
|
||||
assert degree >= 1, "degree must be >= 1"
|
||||
epsilon = epsilon or self.get_params().get('epsilon')
|
||||
old_weights = self.get_weights()
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_weights(new_weights)
|
||||
|
||||
if are_weights_diverged(new_weights):
|
||||
return False
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
new_weight = new_weights[layer_id][cell_id][weight_id]
|
||||
if abs(new_weight - weight) >= epsilon:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
|
||||
@ -503,6 +448,8 @@ class LearningNeuralNetwork(NeuralNetwork):
|
||||
bar.postfix[1]["value"] = history.history['loss'][-1]
|
||||
bar.update()
|
||||
|
||||
|
||||
|
||||
class TrainingNeuralNetworkDecorator(NeuralNetwork):
|
||||
|
||||
def __init__(self, net, **kwargs):
|
||||
@ -591,13 +538,13 @@ if __name__ == '__main__':
|
||||
if False: # ok so this works quite realiably
|
||||
with FixpointExperiment() as exp:
|
||||
run_count = 1000
|
||||
net = TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2)).with_params(epsilon=0.1e-6)
|
||||
net = TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2)).with_params(epsilon=0.0001)
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
loss = net.compiled().train()
|
||||
if run_id % 100 == 0:
|
||||
net.print_weights()
|
||||
# print(net.apply_to_network(net))
|
||||
print("Fixpoint? " + str(net.is_fixpoint(epsilon=0.0001)))
|
||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||
print("Loss " + str(loss))
|
||||
print()
|
||||
if False: # this does not work as the aggregation function screws over the fixpoint computation.... TODO: check for fixpoint in aggregated space...
|
||||
|
39
code/util.py
Normal file
39
code/util.py
Normal file
@ -0,0 +1,39 @@
|
||||
class PrintingObject:
|
||||
|
||||
class SilenceSignal():
|
||||
def __init__(self, obj, value):
|
||||
self.obj = obj
|
||||
self.new_silent = value
|
||||
def __enter__(self):
|
||||
self.old_silent = self.obj.get_silence()
|
||||
self.obj.set_silence(self.new_silent)
|
||||
def __exit__(self, exception_type, exception_value, traceback):
|
||||
self.obj.set_silence(self.old_silent)
|
||||
|
||||
def __init__(self):
|
||||
self.silent = True
|
||||
|
||||
def is_silent(self):
|
||||
return self.silent
|
||||
|
||||
def get_silence(self):
|
||||
return self.is_silent()
|
||||
|
||||
def set_silence(self, value=True):
|
||||
self.silent = value
|
||||
return self
|
||||
|
||||
def unset_silence(self):
|
||||
self.silent = False
|
||||
return self
|
||||
|
||||
def with_silence(self, value=True):
|
||||
self.set_silence(value)
|
||||
return self
|
||||
|
||||
def silence(self, value=True):
|
||||
return self.__class__.SilenceSignal(self, value)
|
||||
|
||||
def _print(self, *args, **kwargs):
|
||||
if not self.silent:
|
||||
print(*args, **kwargs)
|
Loading…
x
Reference in New Issue
Block a user