upped some setups, data incoming
This commit is contained in:
@ -31,14 +31,16 @@ def count(counters, net, notable_nets=[]):
|
|||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
with Experiment('fixpoint-density') as exp:
|
with Experiment('fixpoint-density') as exp:
|
||||||
exp.trials = 100
|
#NOTE: settings could/should stay this way
|
||||||
|
#FFT doesn't work though
|
||||||
|
exp.trials = 100000
|
||||||
exp.epsilon = 1e-4
|
exp.epsilon = 1e-4
|
||||||
net_generators = []
|
net_generators = []
|
||||||
for activation in ['linear', 'sigmoid', 'relu']:
|
for activation in ['linear', 'sigmoid', 'relu']:
|
||||||
# net_generators += [lambda activation=activation: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
net_generators += [lambda activation=activation: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||||
net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||||
#net_generators += [lambda activation=activation: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
#net_generators += [lambda activation=activation: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||||
# net_generators += [lambda activation=activation: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
net_generators += [lambda activation=activation: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
|
||||||
all_counters = []
|
all_counters = []
|
||||||
all_notable_nets = []
|
all_notable_nets = []
|
||||||
all_names = []
|
all_names = []
|
||||||
|
@ -26,8 +26,9 @@ def generate_fixpoint_weights():
|
|||||||
|
|
||||||
|
|
||||||
def generate_fixpoint_net():
|
def generate_fixpoint_net():
|
||||||
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='sigmoid')
|
#NOTE: Weightwise only is all we can do right now IMO
|
||||||
net = AggregatingNeuralNetwork(width=2, depth=2).with_keras_params(activation='sigmoid')
|
net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='sigmoid')
|
||||||
|
# net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='sigmoid') # I don't know if this work for aggregaeting. We don't actually need it, though.
|
||||||
net.set_weights(generate_fixpoint_weights())
|
net.set_weights(generate_fixpoint_weights())
|
||||||
return net
|
return net
|
||||||
|
|
||||||
|
@ -33,15 +33,15 @@ def count(counters, net, notable_nets=[]):
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
||||||
with Experiment('training_fixpoint') as exp:
|
with Experiment('training_fixpoint') as exp:
|
||||||
exp.trials = 20
|
exp.trials = 50
|
||||||
exp.run_count = 500
|
exp.run_count = 1000
|
||||||
exp.epsilon = 1e-4
|
exp.epsilon = 1e-4
|
||||||
net_generators = []
|
net_generators = []
|
||||||
for activation in ['linear']: # , 'sigmoid', 'relu']:
|
for activation in ['linear']: # , 'sigmoid', 'relu']:
|
||||||
for use_bias in [False]:
|
for use_bias in [False]:
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||||
all_counters = []
|
all_counters = []
|
||||||
all_notable_nets = []
|
all_notable_nets = []
|
||||||
all_names = []
|
all_names = []
|
||||||
|
Reference in New Issue
Block a user