logspace....

This commit is contained in:
steffen-illium 2021-06-25 17:46:45 +02:00
parent 5a7dad2363
commit 6c2d544f7c
17 changed files with 34 additions and 5 deletions

View File

@ -50,11 +50,12 @@ class SpawnLinspaceExperiment(SpawnExperiment):
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
# To make sure PCA will plot the same trajectory up until this point, we clone the
# parent-net's weight history as well.
in_between_weights = np.linspace(net1_target_data, net2_target_data, number_clones, endpoint=False)
# in_between_weights = np.linspace(net1_target_data, net2_target_data, number_clones, endpoint=False)
in_between_weights = np.logspace(net1_target_data, net2_target_data, number_clones, endpoint=False)
for j, in_between_weight in enumerate(in_between_weights):
clone = Net(net1.input_size, net1.hidden_size, net1.out_size,
name=f"{net1.name}_clone_{str(j)}", start_time=self.ST_steps)
name=f"{net1.name}_clone_{str(j)}", start_time=self.ST_steps + 100)
clone.apply_weights(torch.as_tensor(in_between_weight))
clone.s_train_weights_history = copy.deepcopy(net1.s_train_weights_history)
@ -109,8 +110,8 @@ if __name__ == '__main__':
ST_log_step_size = 10
# Define number of networks & their architecture
nr_clones = 20
ST_population_size = 3
nr_clones = 100
ST_population_size = 2
ST_net_hidden_size = 2
ST_net_learning_rate = 0.04
ST_name_hash = random.getrandbits(32)
@ -143,3 +144,30 @@ if __name__ == '__main__':
# mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance')
# sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False)
# plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png")
# Pointplot with pre and after parent Distances
import seaborn as sns
from matplotlib import pyplot as plt
# ptplt = sns.pointplot(data=exp.df, x='MAE_pre', y='MAE_post', join=False)
ptplt = sns.pointplot(data=exp.df, x='MIM_pre', y='MIM_post', join=False)
ptplt.set(xscale='log', yscale='log')
x0, x1 = ptplt.axes.get_xlim()
y0, y1 = ptplt.axes.get_ylim()
lims = [max(x0, y0), min(x1, y1)]
# This is the x=y line using transforms
ptplt.plot(lims, lims, 'w', linestyle='dashdot', transform=ptplt.axes.transData)
ptplt.plot([0, 1], [0, 1], ':k', transform=ptplt.axes.transAxes)
ptplt.set(xlabel='Invariant Manhattan Distance befor Training',
ylabel='Invariant Manhattan Distance after Training')
plt.xticks(rotation=45)
for ind, label in enumerate(ptplt.get_xticklabels()):
if ind % 10 == 0: # every 10th label is kept
label.set_visible(True)
label.set_text(round(float(label.get_text()), 3))
else:
label.set_visible(False)
filepath = exp.directory / 'mim_dist_plot.png'
plt.tight_layout()
plt.savefig(filepath)

View File

@ -218,7 +218,8 @@ if __name__ == "__main__":
ST_net_hidden_size = 2
ST_net_learning_rate = 0.004
ST_name_hash = random.getrandbits(32)
ST_synthetic = False
ST_synthetic = True
print(f"Running the robustness comparison experiment:")
exp = RobustnessComparisonExperiment(

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 163 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 133 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 178 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 298 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB