visuals
This commit is contained in:
parent
1639d6c0f1
commit
6625481091
@ -3,6 +3,8 @@ import time
|
|||||||
import dill
|
import dill
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from collections import defaultdict
|
||||||
|
|
||||||
|
|
||||||
class Experiment:
|
class Experiment:
|
||||||
|
|
||||||
@ -17,6 +19,7 @@ class Experiment:
|
|||||||
self.base_dir = self.experiment_name
|
self.base_dir = self.experiment_name
|
||||||
self.next_iteration = 0
|
self.next_iteration = 0
|
||||||
self.log_messages = []
|
self.log_messages = []
|
||||||
|
self.data_storage = defaultdict(list)
|
||||||
|
|
||||||
def __enter__(self):
|
def __enter__(self):
|
||||||
self.dir = os.path.join(self.base_dir, 'experiments', 'exp-{name}-{id}-{it}'.format(
|
self.dir = os.path.join(self.base_dir, 'experiments', 'exp-{name}-{id}-{it}'.format(
|
||||||
@ -46,6 +49,10 @@ class Experiment:
|
|||||||
with open(os.path.join(self.dir, "{name}.dill".format(name=name)), "wb") as dill_file:
|
with open(os.path.join(self.dir, "{name}.dill".format(name=name)), "wb") as dill_file:
|
||||||
dill.dump(value, dill_file)
|
dill.dump(value, dill_file)
|
||||||
|
|
||||||
|
def add_trajectory_segment(self, run_id, trajectory):
|
||||||
|
self.data_storage[run_id].append(trajectory)
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
class FixpointExperiment(Experiment):
|
class FixpointExperiment(Experiment):
|
||||||
|
|
||||||
@ -54,11 +61,14 @@ class FixpointExperiment(Experiment):
|
|||||||
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
||||||
self.interesting_fixpoints = []
|
self.interesting_fixpoints = []
|
||||||
|
|
||||||
def run_net(self, net, step_limit=100):
|
def run_net(self, net, step_limit=100, run_id=0):
|
||||||
i = 0
|
i = 0
|
||||||
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
|
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
|
||||||
net.self_attack()
|
net.self_attack()
|
||||||
i += 1
|
i += 1
|
||||||
|
if run_id:
|
||||||
|
weights = net.get_weights()
|
||||||
|
self.add_trajectory_segment(run_id, weights)
|
||||||
self.count(net)
|
self.count(net)
|
||||||
|
|
||||||
def count(self, net):
|
def count(self, net):
|
||||||
@ -78,7 +88,11 @@ class FixpointExperiment(Experiment):
|
|||||||
|
|
||||||
class MixedFixpointExperiment(FixpointExperiment):
|
class MixedFixpointExperiment(FixpointExperiment):
|
||||||
|
|
||||||
def run_net(self, net, trains_per_application=100, step_limit=100):
|
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0):
|
||||||
|
# TODO Where to place the trajectory storage ?
|
||||||
|
# weights = net.get_weights()
|
||||||
|
# self.add_trajectory_segment(run_id, weights)
|
||||||
|
|
||||||
i = 0
|
i = 0
|
||||||
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
|
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
|
||||||
net.self_attack()
|
net.self_attack()
|
||||||
|
@ -136,11 +136,11 @@ class NeuralNetwork(PrintingObject):
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def repr_weights(self):
|
def repr_weights(self, weights=None):
|
||||||
return self.__class__.weights_to_string(self.get_weights())
|
return self.weights_to_string(weights or self.get_weights())
|
||||||
|
|
||||||
def print_weights(self):
|
def print_weights(self, weights=None):
|
||||||
print(self.repr_weights())
|
print(self.repr_weights(weights))
|
||||||
|
|
||||||
|
|
||||||
class WeightwiseNeuralNetwork(NeuralNetwork):
|
class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||||
@ -605,7 +605,7 @@ class TrainingNeuralNetworkDecorator(NeuralNetwork):
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
if False:
|
if False:
|
||||||
with FixpointExperiment() as exp:
|
with FixpointExperiment() as exp:
|
||||||
for run_id in tqdm(range(100)):
|
for run_id in tqdm(range(1)):
|
||||||
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')
|
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')
|
||||||
# net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2)\
|
# net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2)\
|
||||||
net = FFTNeuralNetwork(aggregates=4, width=2, depth=2) \
|
net = FFTNeuralNetwork(aggregates=4, width=2, depth=2) \
|
||||||
@ -613,9 +613,10 @@ if __name__ == '__main__':
|
|||||||
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')\
|
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')\
|
||||||
# .with_params(print_all_weight_updates=True)
|
# .with_params(print_all_weight_updates=True)
|
||||||
# net.print_weights()
|
# net.print_weights()
|
||||||
exp.run_net(net, 100)
|
|
||||||
exp.log(exp.counters)
|
|
||||||
|
|
||||||
|
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
|
||||||
|
exp.run_net(net, 100, run_id=run_id+1)
|
||||||
|
exp.log(exp.counters)
|
||||||
if False:
|
if False:
|
||||||
# is_fixpoint was wrong because it trivially returned the old weights
|
# is_fixpoint was wrong because it trivially returned the old weights
|
||||||
with IdentLearningExperiment() as exp:
|
with IdentLearningExperiment() as exp:
|
||||||
@ -679,15 +680,16 @@ if __name__ == '__main__':
|
|||||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||||
print("Loss " + str(loss))
|
print("Loss " + str(loss))
|
||||||
print()
|
print()
|
||||||
if True:
|
if False:
|
||||||
# and this gets somewhat interesting... we can still achieve non-trivial fixpoints
|
# and this gets somewhat interesting... we can still achieve non-trivial fixpoints
|
||||||
# over multiple applications when training enough in-between
|
# over multiple applications when training enough in-between
|
||||||
with MixedFixpointExperiment() as exp:
|
with MixedFixpointExperiment() as exp:
|
||||||
for run_id in range(100):
|
for run_id in range(10):
|
||||||
net = TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2))\
|
net = TrainingNeuralNetworkDecorator(FFTNeuralNetwork(2, width=2, depth=2))\
|
||||||
.with_params(epsilon=0.0001)
|
.with_params(epsilon=0.0001, activation='sigmoid')
|
||||||
exp.run_net(net, 500, 10)
|
exp.run_net(net, 500, 10)
|
||||||
|
|
||||||
net.print_weights()
|
net.print_weights()
|
||||||
|
|
||||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||||
print()
|
|
||||||
exp.log(exp.counters)
|
exp.log(exp.counters)
|
||||||
|
@ -1,19 +1,17 @@
|
|||||||
import os
|
import os
|
||||||
import re
|
|
||||||
from collections import defaultdict
|
|
||||||
from tqdm import tqdm
|
|
||||||
from argparse import ArgumentParser
|
|
||||||
from distutils.util import strtobool
|
|
||||||
|
|
||||||
|
from argparse import ArgumentParser
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
|
||||||
|
|
||||||
import plotly as pl
|
import plotly as pl
|
||||||
from plotly import tools
|
|
||||||
import plotly.graph_objs as go
|
import plotly.graph_objs as go
|
||||||
|
|
||||||
|
import colorlover as cl
|
||||||
|
|
||||||
import dill
|
import dill
|
||||||
|
|
||||||
|
from sklearn.manifold.t_sne import TSNE
|
||||||
|
|
||||||
|
|
||||||
def build_args():
|
def build_args():
|
||||||
arg_parser = ArgumentParser()
|
arg_parser = ArgumentParser()
|
||||||
@ -22,95 +20,174 @@ def build_args():
|
|||||||
return arg_parser.parse_args()
|
return arg_parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
def numberFromStrings(string) -> list:
|
def plot_latent_trajectories(data_dict, filename='latent_trajectory_plot'):
|
||||||
numberfromstring = [int(x) for x in re.findall('\d+', string)]
|
|
||||||
return numberfromstring
|
|
||||||
|
|
||||||
|
# TODO Fist and Last Position Markers
|
||||||
|
|
||||||
def visulize_as_tiled_subplot(plotting_tuple, filename='plot'):
|
|
||||||
def norm(val, a=0, b=0.25):
|
def norm(val, a=0, b=0.25):
|
||||||
return (val - a) / (b - a)
|
return (val - a) / (b - a)
|
||||||
|
|
||||||
data = np.asarray(plotting_tuple)
|
bupu = cl.scales['9']['seq']['BuPu']
|
||||||
|
scale = cl.interp(bupu, len(data_dict)) # Map color scale to N bins
|
||||||
|
|
||||||
fig = tools.make_subplots(rows=1, cols=3,
|
# Fit the mebedding space
|
||||||
subplot_titles=('Layers: 1', 'Layers: 2', 'Layers: 3'),
|
transformer = TSNE()
|
||||||
horizontal_spacing=0.05)
|
for trajectory in data_dict:
|
||||||
|
transformer.fit(trajectory)
|
||||||
|
|
||||||
for x in range(1, 4):
|
# Transform data accordingly and plot it
|
||||||
# Only select Plots with x Layers
|
data = []
|
||||||
scatter_slice = data[np.where(data[:, 2] == x)]
|
for t_id, trajectory in enumerate(data_dict):
|
||||||
# Only Select Plots with x Cells
|
transformed = transformer.fit(trajectory)
|
||||||
scatter_slice = scatter_slice[np.where(scatter_slice[:, 1] <= 10)]
|
line_trace = go.Scatter(
|
||||||
# Normalize colors
|
x=transformed[:, 0],
|
||||||
colors = scatter_slice[:, 4]
|
y=transformed[:, 1],
|
||||||
# colors = np.apply_along_axis(norm, 0, scatter_slice[:, 4])
|
text='Hovertext goes here'.format(),
|
||||||
scatter = go.Scatter(x=scatter_slice[:, 3],
|
line=dict(color=scale[t_id]),
|
||||||
y=scatter_slice[:, 1],
|
# legendgroup='Position -{}'.format(pos),
|
||||||
hoverinfo='text',
|
# name='Position -{}'.format(pos),
|
||||||
text=['Absolute Loss:<br>{}'.format(val) for val in colors],
|
showlegend=False,
|
||||||
mode='markers',
|
# hoverinfo='text',
|
||||||
showlegend=False,
|
mode='lines')
|
||||||
marker=dict(size=10, color=colors, colorscale='Jet',
|
line_start = go.Scatter(mode='markers', x=transformed[0, 0], y=transformed[0, 1],
|
||||||
# Only plot the colorscale once, use one for all
|
marker=dict(
|
||||||
showscale=True if x == 1 else False,
|
color='rgb(255, 0, 0)',
|
||||||
cmax=0.25, cmin=0,
|
size=2
|
||||||
colorbar=dict(y=0.5, x=1, tickmode='array', ticks='outside',
|
),
|
||||||
tickvals=[0, 0.05, 0.10, 0.15, 0.20, 0.25],
|
showlegend=False
|
||||||
ticktext=["0.00", "0.05", "0.10", "0.15", "0.20", "0.25"]
|
)
|
||||||
)
|
line_end = go.Scatter(mode='markers', x=transformed[-1, 0], y=transformed[-1, 1],
|
||||||
)
|
marker=dict(
|
||||||
)
|
color='rgb(0, 0, 0)',
|
||||||
fig.append_trace(scatter, 1, x,)
|
size=2
|
||||||
# TODO: Layout Loop
|
),
|
||||||
if x == 1:
|
showlegend=False
|
||||||
fig['layout']['yaxis{}'.format(x)].update(tickwidth=1, title='Number of Cells')
|
)
|
||||||
if x == 2:
|
data.extend([line_trace, line_start, line_end])
|
||||||
fig['layout']['xaxis{}'.format(x)].update(tickwidth=1, title='Position -X')
|
|
||||||
|
|
||||||
fig['layout'].update(title='{} - Mean Absolute Loss'.format(os.path.split('DESTINATION_OR_EXPERIMENT_NAME')[-1].upper()),
|
layout = dict(title='{} - Latent Trajectory Movement'.format('Penis'),
|
||||||
height=300, width=800, margin=dict(l=50, r=0, t=60, b=50))
|
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
|
||||||
# import plotly.io as pio
|
# import plotly.io as pio
|
||||||
# pio.write_image(fig, filename)
|
# pio.write_image(fig, filename)
|
||||||
pl.offline.plot(fig, filename=filename)
|
fig = go.Figure(data=data, layout=layout)
|
||||||
|
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
def visulize_as_splatter3d(plotting_tuple, filename='plot'):
|
def plot_latent_trajectories_3D(param_dict, filename='plot'):
|
||||||
# timesteps, cells, layers, positions, val
|
def norm(val, a=0, b=0.25):
|
||||||
_ , cells, layers, position, val = zip(*plotting_tuple)
|
return (val - a) / (b - a)
|
||||||
text = ['Cells: {}<br>Layers: {}<br>Position: {}<br>Mean(Min()): {}'.format(cells, layers, position, val)
|
|
||||||
for _, cells, layers, position, val in plotting_tuple]
|
bupu = cl.scales['9']['seq']['BuPu']
|
||||||
|
scale = cl.interp(bupu, len(param_dict.get('trajectories', []))) # Map color scale to N bins
|
||||||
|
|
||||||
|
max_len = max([len(trajectory) for trajectory in param_dict.get('trajectories', [])])
|
||||||
|
|
||||||
|
# Fit the mebedding space
|
||||||
|
transformer = TSNE()
|
||||||
|
for trajectory in param_dict.get('trajectories', []):
|
||||||
|
transformer.fit(trajectory)
|
||||||
|
|
||||||
|
# Transform data accordingly and plot it
|
||||||
|
data = []
|
||||||
|
for t_id, trajectory in enumerate(param_dict.get('trajectories', [])):
|
||||||
|
transformed = transformer.fit(trajectory)
|
||||||
|
trace = go.Scatter3d(
|
||||||
|
x=transformed[:, 0],
|
||||||
|
y=transformed[:, 1],
|
||||||
|
z=np.arange(max(max_len)),
|
||||||
|
text='Hovertext goes here'.format(),
|
||||||
|
line=dict(color=scale[t_id]),
|
||||||
|
# legendgroup='Position -{}'.format(pos),
|
||||||
|
# name='Position -{}'.format(pos),
|
||||||
|
showlegend=False,
|
||||||
|
# hoverinfo='text',
|
||||||
|
mode='lines')
|
||||||
|
data.append(trace)
|
||||||
|
|
||||||
data = [go.Scatter3d(x=cells, y=layers, z=position, text=text, hoverinfo='text', mode='markers',
|
|
||||||
marker=dict(color=val, colorscale='Jet', opacity=0.8,
|
|
||||||
colorbar=dict(y=0.5, x=0.9, title="Mean(Min(Seeds))"))
|
|
||||||
)]
|
|
||||||
layout = go.Layout(scene=dict(aspectratio=dict(x=2, y=2, z=1),
|
layout = go.Layout(scene=dict(aspectratio=dict(x=2, y=2, z=1),
|
||||||
xaxis=dict(tickwidth=1, title='Number of Cells'),
|
xaxis=dict(tickwidth=1, title='Number of Cells'),
|
||||||
yaxis=dict(tickwidth=1, title='Number of Layers'),
|
yaxis=dict(tickwidth=1, title='Number of Layers'),
|
||||||
zaxis=dict(tickwidth=1, title='Position -pX')),
|
zaxis=dict(tickwidth=1, title='Position -pX')),
|
||||||
|
title='{} - Latent Trajectory Movement'.format('Penis'),
|
||||||
|
width=800, height=800,
|
||||||
margin=dict(l=0, r=0, b=0, t=0))
|
margin=dict(l=0, r=0, b=0, t=0))
|
||||||
|
|
||||||
fig = go.Figure(data=data, layout=layout)
|
fig = go.Figure(data=data, layout=layout)
|
||||||
pl.offline.plot(fig, auto_open=True, filename=filename) # filename='3d-scatter_plot'
|
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
def compile_run_name(path: str) -> dict:
|
def plot_histogram(bars_dict_list, filename='histogram_plot'):
|
||||||
"""
|
# catagorical
|
||||||
Retrieve all names, extract index positions and group by seeds.
|
ryb = cl.scales['10']['div']['RdYlBu']
|
||||||
|
|
||||||
:param path: Path to the current TB folder of a sinle NN configuration
|
data = []
|
||||||
:return: List of foldernames to filter for.
|
for bar_id, bars_dict in bars_dict_list:
|
||||||
"""
|
hist = go.Histogram(
|
||||||
config_keys = ['run_seed', 'timesteps', 'index_position', 'cell_count', 'layers', 'cell_type']
|
histfunc="count",
|
||||||
found_configurations = defaultdict(list)
|
y=bars_dict.get('value', 14),
|
||||||
for dname in os.listdir(path):
|
x=bars_dict.get('name', 'gimme a name'),
|
||||||
if os.path.isdir(os.path.join(path, dname)):
|
showlegend=False,
|
||||||
this_config = {key: value for key, value in zip(config_keys, dname.split("_"))}
|
marker=dict(
|
||||||
found_configurations[this_config['index_position']].append(dname)
|
color=ryb[bar_id]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
data.append(hist)
|
||||||
|
|
||||||
return found_configurations
|
layout=dict(title='{} Histogram Plot'.format('Experiment Name Penis'),
|
||||||
|
height=400, width=400, margin=dict(l=0, r=0, t=0, b=0))
|
||||||
|
|
||||||
|
fig = go.Figure(data=data, layout=layout)
|
||||||
|
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def line_plot(line_dict_list, filename='lineplot'):
|
||||||
|
# lines with standard deviation
|
||||||
|
# Transform data accordingly and plot it
|
||||||
|
data = []
|
||||||
|
rdylgn = cl.scales['10']['div']['RdYlGn']
|
||||||
|
rdylgn_background = [scale + (0.4,) for scale in cl.to_numeric(rdylgn)]
|
||||||
|
for line_id, line_dict in enumerate(line_dict_list):
|
||||||
|
name = line_dict.get('name', 'gimme a name')
|
||||||
|
|
||||||
|
upper_bound = go.Scatter(
|
||||||
|
name='Upper Bound',
|
||||||
|
x=line_dict['x'],
|
||||||
|
y=line_dict['upper_y'],
|
||||||
|
mode='lines',
|
||||||
|
marker=dict(color="#444"),
|
||||||
|
line=dict(width=0),
|
||||||
|
fillcolor=rdylgn_background[line_id],
|
||||||
|
)
|
||||||
|
|
||||||
|
trace = go.Scatter(
|
||||||
|
x=line_dict['x'],
|
||||||
|
y=line_dict['main_y'],
|
||||||
|
mode='lines',
|
||||||
|
name=name,
|
||||||
|
line=dict(color=line_id),
|
||||||
|
fillcolor=rdylgn_background[line_id],
|
||||||
|
fill='tonexty')
|
||||||
|
|
||||||
|
lower_bound = go.Scatter(
|
||||||
|
name='Lower Bound',
|
||||||
|
x=line_dict['x'],
|
||||||
|
y=line_dict['lower_y'],
|
||||||
|
marker=dict(color="#444"),
|
||||||
|
line=dict(width=0),
|
||||||
|
mode='lines')
|
||||||
|
|
||||||
|
data.extend([upper_bound, trace, lower_bound])
|
||||||
|
|
||||||
|
layout=dict(title='{} Line Plot'.format('Experiment Name Penis'),
|
||||||
|
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
|
||||||
|
|
||||||
|
fig = go.Figure(data=data, layout=layout)
|
||||||
|
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
@ -118,7 +195,4 @@ if __name__ == '__main__':
|
|||||||
in_file = args.in_file[0]
|
in_file = args.in_file[0]
|
||||||
out_file = args.out_file
|
out_file = args.out_file
|
||||||
|
|
||||||
with open(in_file, 'rb') as dill_file:
|
print('aha')
|
||||||
experiment = dill.load(dill_file)
|
|
||||||
|
|
||||||
print('hi')
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user