visuals
This commit is contained in:
@ -1,19 +1,17 @@
|
||||
import os
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from tqdm import tqdm
|
||||
from argparse import ArgumentParser
|
||||
from distutils.util import strtobool
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
import plotly as pl
|
||||
from plotly import tools
|
||||
import plotly.graph_objs as go
|
||||
|
||||
import colorlover as cl
|
||||
|
||||
import dill
|
||||
|
||||
from sklearn.manifold.t_sne import TSNE
|
||||
|
||||
|
||||
def build_args():
|
||||
arg_parser = ArgumentParser()
|
||||
@ -22,95 +20,174 @@ def build_args():
|
||||
return arg_parser.parse_args()
|
||||
|
||||
|
||||
def numberFromStrings(string) -> list:
|
||||
numberfromstring = [int(x) for x in re.findall('\d+', string)]
|
||||
return numberfromstring
|
||||
def plot_latent_trajectories(data_dict, filename='latent_trajectory_plot'):
|
||||
|
||||
# TODO Fist and Last Position Markers
|
||||
|
||||
def visulize_as_tiled_subplot(plotting_tuple, filename='plot'):
|
||||
def norm(val, a=0, b=0.25):
|
||||
return (val - a) / (b - a)
|
||||
|
||||
data = np.asarray(plotting_tuple)
|
||||
bupu = cl.scales['9']['seq']['BuPu']
|
||||
scale = cl.interp(bupu, len(data_dict)) # Map color scale to N bins
|
||||
|
||||
fig = tools.make_subplots(rows=1, cols=3,
|
||||
subplot_titles=('Layers: 1', 'Layers: 2', 'Layers: 3'),
|
||||
horizontal_spacing=0.05)
|
||||
# Fit the mebedding space
|
||||
transformer = TSNE()
|
||||
for trajectory in data_dict:
|
||||
transformer.fit(trajectory)
|
||||
|
||||
for x in range(1, 4):
|
||||
# Only select Plots with x Layers
|
||||
scatter_slice = data[np.where(data[:, 2] == x)]
|
||||
# Only Select Plots with x Cells
|
||||
scatter_slice = scatter_slice[np.where(scatter_slice[:, 1] <= 10)]
|
||||
# Normalize colors
|
||||
colors = scatter_slice[:, 4]
|
||||
# colors = np.apply_along_axis(norm, 0, scatter_slice[:, 4])
|
||||
scatter = go.Scatter(x=scatter_slice[:, 3],
|
||||
y=scatter_slice[:, 1],
|
||||
hoverinfo='text',
|
||||
text=['Absolute Loss:<br>{}'.format(val) for val in colors],
|
||||
mode='markers',
|
||||
showlegend=False,
|
||||
marker=dict(size=10, color=colors, colorscale='Jet',
|
||||
# Only plot the colorscale once, use one for all
|
||||
showscale=True if x == 1 else False,
|
||||
cmax=0.25, cmin=0,
|
||||
colorbar=dict(y=0.5, x=1, tickmode='array', ticks='outside',
|
||||
tickvals=[0, 0.05, 0.10, 0.15, 0.20, 0.25],
|
||||
ticktext=["0.00", "0.05", "0.10", "0.15", "0.20", "0.25"]
|
||||
)
|
||||
)
|
||||
)
|
||||
fig.append_trace(scatter, 1, x,)
|
||||
# TODO: Layout Loop
|
||||
if x == 1:
|
||||
fig['layout']['yaxis{}'.format(x)].update(tickwidth=1, title='Number of Cells')
|
||||
if x == 2:
|
||||
fig['layout']['xaxis{}'.format(x)].update(tickwidth=1, title='Position -X')
|
||||
# Transform data accordingly and plot it
|
||||
data = []
|
||||
for t_id, trajectory in enumerate(data_dict):
|
||||
transformed = transformer.fit(trajectory)
|
||||
line_trace = go.Scatter(
|
||||
x=transformed[:, 0],
|
||||
y=transformed[:, 1],
|
||||
text='Hovertext goes here'.format(),
|
||||
line=dict(color=scale[t_id]),
|
||||
# legendgroup='Position -{}'.format(pos),
|
||||
# name='Position -{}'.format(pos),
|
||||
showlegend=False,
|
||||
# hoverinfo='text',
|
||||
mode='lines')
|
||||
line_start = go.Scatter(mode='markers', x=transformed[0, 0], y=transformed[0, 1],
|
||||
marker=dict(
|
||||
color='rgb(255, 0, 0)',
|
||||
size=2
|
||||
),
|
||||
showlegend=False
|
||||
)
|
||||
line_end = go.Scatter(mode='markers', x=transformed[-1, 0], y=transformed[-1, 1],
|
||||
marker=dict(
|
||||
color='rgb(0, 0, 0)',
|
||||
size=2
|
||||
),
|
||||
showlegend=False
|
||||
)
|
||||
data.extend([line_trace, line_start, line_end])
|
||||
|
||||
fig['layout'].update(title='{} - Mean Absolute Loss'.format(os.path.split('DESTINATION_OR_EXPERIMENT_NAME')[-1].upper()),
|
||||
height=300, width=800, margin=dict(l=50, r=0, t=60, b=50))
|
||||
layout = dict(title='{} - Latent Trajectory Movement'.format('Penis'),
|
||||
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
|
||||
# import plotly.io as pio
|
||||
# pio.write_image(fig, filename)
|
||||
pl.offline.plot(fig, filename=filename)
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
def visulize_as_splatter3d(plotting_tuple, filename='plot'):
|
||||
# timesteps, cells, layers, positions, val
|
||||
_ , cells, layers, position, val = zip(*plotting_tuple)
|
||||
text = ['Cells: {}<br>Layers: {}<br>Position: {}<br>Mean(Min()): {}'.format(cells, layers, position, val)
|
||||
for _, cells, layers, position, val in plotting_tuple]
|
||||
def plot_latent_trajectories_3D(param_dict, filename='plot'):
|
||||
def norm(val, a=0, b=0.25):
|
||||
return (val - a) / (b - a)
|
||||
|
||||
bupu = cl.scales['9']['seq']['BuPu']
|
||||
scale = cl.interp(bupu, len(param_dict.get('trajectories', []))) # Map color scale to N bins
|
||||
|
||||
max_len = max([len(trajectory) for trajectory in param_dict.get('trajectories', [])])
|
||||
|
||||
# Fit the mebedding space
|
||||
transformer = TSNE()
|
||||
for trajectory in param_dict.get('trajectories', []):
|
||||
transformer.fit(trajectory)
|
||||
|
||||
# Transform data accordingly and plot it
|
||||
data = []
|
||||
for t_id, trajectory in enumerate(param_dict.get('trajectories', [])):
|
||||
transformed = transformer.fit(trajectory)
|
||||
trace = go.Scatter3d(
|
||||
x=transformed[:, 0],
|
||||
y=transformed[:, 1],
|
||||
z=np.arange(max(max_len)),
|
||||
text='Hovertext goes here'.format(),
|
||||
line=dict(color=scale[t_id]),
|
||||
# legendgroup='Position -{}'.format(pos),
|
||||
# name='Position -{}'.format(pos),
|
||||
showlegend=False,
|
||||
# hoverinfo='text',
|
||||
mode='lines')
|
||||
data.append(trace)
|
||||
|
||||
data = [go.Scatter3d(x=cells, y=layers, z=position, text=text, hoverinfo='text', mode='markers',
|
||||
marker=dict(color=val, colorscale='Jet', opacity=0.8,
|
||||
colorbar=dict(y=0.5, x=0.9, title="Mean(Min(Seeds))"))
|
||||
)]
|
||||
layout = go.Layout(scene=dict(aspectratio=dict(x=2, y=2, z=1),
|
||||
xaxis=dict(tickwidth=1, title='Number of Cells'),
|
||||
yaxis=dict(tickwidth=1, title='Number of Layers'),
|
||||
zaxis=dict(tickwidth=1, title='Position -pX')),
|
||||
xaxis=dict(tickwidth=1, title='Number of Cells'),
|
||||
yaxis=dict(tickwidth=1, title='Number of Layers'),
|
||||
zaxis=dict(tickwidth=1, title='Position -pX')),
|
||||
title='{} - Latent Trajectory Movement'.format('Penis'),
|
||||
width=800, height=800,
|
||||
margin=dict(l=0, r=0, b=0, t=0))
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename) # filename='3d-scatter_plot'
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
def compile_run_name(path: str) -> dict:
|
||||
"""
|
||||
Retrieve all names, extract index positions and group by seeds.
|
||||
def plot_histogram(bars_dict_list, filename='histogram_plot'):
|
||||
# catagorical
|
||||
ryb = cl.scales['10']['div']['RdYlBu']
|
||||
|
||||
:param path: Path to the current TB folder of a sinle NN configuration
|
||||
:return: List of foldernames to filter for.
|
||||
"""
|
||||
config_keys = ['run_seed', 'timesteps', 'index_position', 'cell_count', 'layers', 'cell_type']
|
||||
found_configurations = defaultdict(list)
|
||||
for dname in os.listdir(path):
|
||||
if os.path.isdir(os.path.join(path, dname)):
|
||||
this_config = {key: value for key, value in zip(config_keys, dname.split("_"))}
|
||||
found_configurations[this_config['index_position']].append(dname)
|
||||
data = []
|
||||
for bar_id, bars_dict in bars_dict_list:
|
||||
hist = go.Histogram(
|
||||
histfunc="count",
|
||||
y=bars_dict.get('value', 14),
|
||||
x=bars_dict.get('name', 'gimme a name'),
|
||||
showlegend=False,
|
||||
marker=dict(
|
||||
color=ryb[bar_id]
|
||||
),
|
||||
)
|
||||
data.append(hist)
|
||||
|
||||
return found_configurations
|
||||
layout=dict(title='{} Histogram Plot'.format('Experiment Name Penis'),
|
||||
height=400, width=400, margin=dict(l=0, r=0, t=0, b=0))
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def line_plot(line_dict_list, filename='lineplot'):
|
||||
# lines with standard deviation
|
||||
# Transform data accordingly and plot it
|
||||
data = []
|
||||
rdylgn = cl.scales['10']['div']['RdYlGn']
|
||||
rdylgn_background = [scale + (0.4,) for scale in cl.to_numeric(rdylgn)]
|
||||
for line_id, line_dict in enumerate(line_dict_list):
|
||||
name = line_dict.get('name', 'gimme a name')
|
||||
|
||||
upper_bound = go.Scatter(
|
||||
name='Upper Bound',
|
||||
x=line_dict['x'],
|
||||
y=line_dict['upper_y'],
|
||||
mode='lines',
|
||||
marker=dict(color="#444"),
|
||||
line=dict(width=0),
|
||||
fillcolor=rdylgn_background[line_id],
|
||||
)
|
||||
|
||||
trace = go.Scatter(
|
||||
x=line_dict['x'],
|
||||
y=line_dict['main_y'],
|
||||
mode='lines',
|
||||
name=name,
|
||||
line=dict(color=line_id),
|
||||
fillcolor=rdylgn_background[line_id],
|
||||
fill='tonexty')
|
||||
|
||||
lower_bound = go.Scatter(
|
||||
name='Lower Bound',
|
||||
x=line_dict['x'],
|
||||
y=line_dict['lower_y'],
|
||||
marker=dict(color="#444"),
|
||||
line=dict(width=0),
|
||||
mode='lines')
|
||||
|
||||
data.extend([upper_bound, trace, lower_bound])
|
||||
|
||||
layout=dict(title='{} Line Plot'.format('Experiment Name Penis'),
|
||||
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -118,7 +195,4 @@ if __name__ == '__main__':
|
||||
in_file = args.in_file[0]
|
||||
out_file = args.out_file
|
||||
|
||||
with open(in_file, 'rb') as dill_file:
|
||||
experiment = dill.load(dill_file)
|
||||
|
||||
print('hi')
|
||||
print('aha')
|
||||
|
Reference in New Issue
Block a user