Journal TEx Text
This commit is contained in:
50
experiments/meta_task_exp.py
Normal file
50
experiments/meta_task_exp.py
Normal file
@ -0,0 +1,50 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
import seaborn as sns
|
||||
from torch import nn
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from tqdm import tqdm
|
||||
|
||||
from network import MetaNet
|
||||
|
||||
|
||||
class TaskDataset(Dataset):
|
||||
def __init__(self, length=int(5e5)):
|
||||
super().__init__()
|
||||
self.length = length
|
||||
self.prng = np.random.default_rng()
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
|
||||
def __getitem__(self, _):
|
||||
ab = self.prng.normal(size=(2,)).astype(np.float32)
|
||||
return ab, ab.sum(axis=-1, keepdims=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
metanet = MetaNet(2, 3, 4, 1)
|
||||
loss_fn = nn.MSELoss()
|
||||
optimizer = torch.optim.AdamW(metanet.parameters(), lr=0.004)
|
||||
|
||||
d = DataLoader(TaskDataset(), batch_size=50, shuffle=True, drop_last=True)
|
||||
# metanet.train(True)
|
||||
losses = []
|
||||
for batch_x, batch_y in tqdm(d, total=len(d)):
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
|
||||
y = metanet(batch_x)
|
||||
loss = loss_fn(y, batch_y)
|
||||
loss.backward()
|
||||
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
|
||||
losses.append(loss.item())
|
||||
|
||||
sns.lineplot(y=np.asarray(losses), x=np.arange(len(losses)))
|
||||
plt.show()
|
||||
|
||||
|
Reference in New Issue
Block a user