journal_robustness.py redone, now is sensitive to seeds and plots

This commit is contained in:
steffen-illium
2021-05-23 13:46:21 +02:00
parent 74d618774a
commit 55bdd706b6
4 changed files with 70 additions and 34 deletions

View File

@@ -28,7 +28,7 @@ def mean_invariate_manhattan_distance(x, y):
# distances of ascending values, ie. sum (abs(min1_X-min1_Y), abs(min2_X-min2Y) ...) / mean.
# Idea was to find weight sets that have same values but just in different positions, that would
# make this distance 0.
return np.mean(list(map(l1, zip(sorted(x), sorted(y)))))
return np.mean(list(map(l1, zip(sorted(x.numpy()), sorted(y.numpy())))))
def distance_matrix(nets, distance="MIM", print_it=True):
@@ -212,19 +212,19 @@ if __name__ == "__main__":
# Define number of runs & name:
ST_runs = 1
ST_runs_name = "test-27"
ST_steps = 1700
ST_steps = 2500
ST_epochs = 2
ST_log_step_size = 10
# Define number of networks & their architecture
nr_clones = 5
ST_population_size = 1
nr_clones = 10
ST_population_size = 3
ST_net_hidden_size = 2
ST_net_learning_rate = 0.04
ST_name_hash = random.getrandbits(32)
print(f"Running the Spawn experiment:")
for noise_factor in range(2,3):
for noise_factor in [1]:
SpawnExperiment(
population_size=ST_population_size,
log_step_size=ST_log_step_size,