tried out some stuff
This commit is contained in:
18
code/soup.py
18
code/soup.py
@ -33,6 +33,11 @@ class Soup:
|
||||
other_particle_id = int(prng() * len(self.particles))
|
||||
other_particle = self.particles[other_particle_id]
|
||||
particle.attack(other_particle)
|
||||
if self.params.get('remove_divergent') and particle.is_diverged():
|
||||
self.particles[particle_id] = self.generator()
|
||||
if self.params.get('remove_zero') and particle.is_zero():
|
||||
self.particles[particle_id] = self.generator()
|
||||
|
||||
|
||||
def count(self):
|
||||
counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
||||
@ -53,9 +58,12 @@ class Soup:
|
||||
|
||||
if __name__ == '__main__':
|
||||
with SoupExperiment() as exp:
|
||||
for run_id in tqdm(range(1)):
|
||||
net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
soup = Soup(100, net_generator)
|
||||
for run_id in range(1):
|
||||
net_generator = lambda: WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='sigmoid').with_params()
|
||||
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
soup = Soup(100, net_generator).with_params(remove_divergent=True, remove_zero=True)
|
||||
soup.seed()
|
||||
soup.evolve(100)
|
||||
exp.log(soup.count())
|
||||
for _ in tqdm(range(100)):
|
||||
soup.evolve()
|
||||
exp.log(soup.count())
|
||||
|
Reference in New Issue
Block a user