tried out some stuff
This commit is contained in:
@ -177,6 +177,13 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
count += 1
|
||||
return total / float(count)
|
||||
|
||||
@staticmethod
|
||||
def aggregate_max(weights):
|
||||
max_found = weights[0]
|
||||
for weight in weights:
|
||||
max_found = weight > max_found and weight or max_found
|
||||
return max_found
|
||||
|
||||
@staticmethod
|
||||
def deaggregate_identically(aggregate, amount):
|
||||
return [aggregate for _ in range(amount)]
|
||||
@ -307,11 +314,12 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
return new_weights
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')
|
||||
net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random, print_all_weight_updates=False)
|
||||
net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random, print_all_weight_updates=False, use_bias=True)
|
||||
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear').with_params(print_all_weight_updates=True)
|
||||
# net.print_weights()
|
||||
exp.run_net(net, 100)
|
||||
|
Reference in New Issue
Block a user