Readme Update und Smaller GN Training
This commit is contained in:
parent
eb3b9b8958
commit
3fe4f49bca
65
README.md
65
README.md
@ -1,48 +1,51 @@
|
|||||||
# Bureaucratic Cohort Swarms
|
# Bureaucratic Cohort Swarms
|
||||||
### (The Meta-Task Experience) # Deadline: 28.02.22
|
### (The Meta-Task Experience) # Deadline: 28.02.22
|
||||||
## Experimente
|
## Experimente
|
||||||
Fixpoint Tests:
|
### Fixpoint Tests:
|
||||||
|
|
||||||
-> Dropout Test
|
- [ ] Dropout Test
|
||||||
(Macht das Partikel beim Goal mit oder ist es nur SRN)
|
- (Macht das Partikel beim Goal mit oder ist es nur SRN)
|
||||||
Zero_ident diff = -00.04999637603759766 %
|
- Zero_ident diff = -00.04999637603759766 %
|
||||||
|
|
||||||
-> gnf(1) -> Aprox. Weight
|
- [ ] gnf(1) -> Aprox. Weight
|
||||||
Übersetung in ein Gewichtsskalar
|
- Übersetung in ein Gewichtsskalar
|
||||||
-> Einbettung in ein Reguläres Netz
|
- Einbettung in ein Reguläres Netz
|
||||||
|
|
||||||
(-> Übersetung in ein Explainable AI Framework)
|
- [ ] Übersetung in ein Explainable AI Framework
|
||||||
-> Rückschlüsse auf Mikro Netze
|
- Rückschlüsse auf Mikro Netze
|
||||||
|
|
||||||
-> Visualiserung
|
- [ ] Visualiserung
|
||||||
-> Der Zugehörigkeit
|
- Der Zugehörigkeit
|
||||||
-> Der Vernetzung
|
- Der Vernetzung
|
||||||
|
|
||||||
-> PCA()
|
- [ ] PCA()
|
||||||
-> Dataframe Epoch, Weight, dim_1, ..., dim_n
|
- Dataframe Epoch, Weight, dim_1, ..., dim_n
|
||||||
-> Visualisierung als Trajectory Cube
|
- Visualisierung als Trajectory Cube
|
||||||
|
|
||||||
-> Recherche zu Makro Mikro Netze Strukturen
|
- [ ] Recherche zu Makro Mikro Netze Strukturen
|
||||||
Gibts das schon?
|
- gits das schon?
|
||||||
Hypernetwork?
|
- Hypernetwork?
|
||||||
arxiv: 1905.02898
|
- arxiv: 1905.02898
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
Tasks für Steffen:
|
### Tasks für Steffen:
|
||||||
- Training mit kleineren GNs
|
|
||||||
- Weiter Trainieren -> 500 Epochs?
|
- [ ] Training mit kleineren GNs -| Running
|
||||||
- Loss Gewichtung anpassen
|
- [ ] Weiter Trainieren -> 500 Epochs?
|
||||||
- Training ohne Residual Skip Connection
|
- [ ] Loss Gewichtung anpassen
|
||||||
- Test mit Baseline Dense Network
|
- [ ] Training ohne Residual Skip Connection
|
||||||
-> mit vergleichbaren Neuron Count
|
- [ ] Test mit Baseline Dense Network
|
||||||
-> mit gesamt Weight Count
|
- [ ] mit vergleichbaren Neuron Count
|
||||||
- Task/Goal statt SRNN-Task
|
- [ ] mit gesamt Weight Count
|
||||||
|
- [ ] Task/Goal statt SRNN-Task
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
Für Menschen mit zu viel Zeit:
|
### Für Menschen mit zu viel Zeit:
|
||||||
-> Sparse Network Training der Self Replication
|
- [ ] Sparse Network Training der Self Replication
|
||||||
(Just for the lulz and speeeeeeed)
|
- Just for the lulz and speeeeeeed)
|
||||||
|
- (Spaß bei Seite, wäre wichtig für schnellere Forschung)
|
||||||
|
<https://pytorch.org/docs/stable/sparse.html>
|
||||||
|
|
||||||
---
|
---
|
||||||
|
@ -117,8 +117,11 @@ def validate(checkpoint_path, ratio=0.1):
|
|||||||
return acc
|
return acc
|
||||||
|
|
||||||
|
|
||||||
def new_train_storage_df():
|
def new_storage_df(identifier, weight_count):
|
||||||
return pd.DataFrame(columns=['Epoch', 'Batch', 'Metric', 'Score'])
|
if identifier == 'train':
|
||||||
|
return pd.DataFrame(columns=['Epoch', 'Batch', 'Metric', 'Score'])
|
||||||
|
elif identifier == 'weights':
|
||||||
|
return pd.DataFrame(columns=['Epoch', 'Weight', *(f'weight_{x}' for x in range(weight_count))])
|
||||||
|
|
||||||
|
|
||||||
def checkpoint_and_validate(model, out_path, epoch_n, final_model=False):
|
def checkpoint_and_validate(model, out_path, epoch_n, final_model=False):
|
||||||
@ -163,8 +166,8 @@ def plot_training_result(path_to_dataframe):
|
|||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
||||||
self_train = False
|
self_train = True
|
||||||
training = False
|
training = True
|
||||||
plotting = True
|
plotting = True
|
||||||
particle_analysis = True
|
particle_analysis = True
|
||||||
as_sparse_network_test = True
|
as_sparse_network_test = True
|
||||||
@ -172,9 +175,10 @@ if __name__ == '__main__':
|
|||||||
data_path = Path('data')
|
data_path = Path('data')
|
||||||
data_path.mkdir(exist_ok=True, parents=True)
|
data_path.mkdir(exist_ok=True, parents=True)
|
||||||
|
|
||||||
run_path = Path('output') / 'mnist_self_train_100_NEW_STYLE'
|
run_path = Path('output') / 'mn_st_smaller'
|
||||||
model_path = run_path / '0000_trained_model.zip'
|
model_path = run_path / '0000_trained_model.zip'
|
||||||
df_store_path = run_path / 'train_store.csv'
|
df_store_path = run_path / 'train_store.csv'
|
||||||
|
weight_store_path = run_path / 'weight_store.csv'
|
||||||
|
|
||||||
if training:
|
if training:
|
||||||
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
||||||
@ -186,11 +190,13 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
interface = np.prod(dataset[0][0].shape)
|
interface = np.prod(dataset[0][0].shape)
|
||||||
metanet = MetaNet(interface, depth=5, width=6, out=10).to(DEVICE)
|
metanet = MetaNet(interface, depth=5, width=6, out=10).to(DEVICE)
|
||||||
|
meta_weight_count = sum(p.numel() for p in next(metanet.particles).parameters())
|
||||||
|
|
||||||
loss_fn = nn.CrossEntropyLoss()
|
loss_fn = nn.CrossEntropyLoss()
|
||||||
optimizer = torch.optim.SGD(metanet.parameters(), lr=0.008, momentum=0.9)
|
optimizer = torch.optim.SGD(metanet.parameters(), lr=0.008, momentum=0.9)
|
||||||
|
|
||||||
train_store = new_train_storage_df()
|
train_store = new_storage_df('train', None)
|
||||||
|
weight_store = new_storage_df('train', meta_weight_count)
|
||||||
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
||||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
||||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
||||||
@ -247,16 +253,24 @@ if __name__ == '__main__':
|
|||||||
for key, value in dict(counter_dict).items():
|
for key, value in dict(counter_dict).items():
|
||||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
for particle in metanet.particles:
|
||||||
|
weight_log = (epoch, particle.name, *(x for y in particle.parameters() for x in y))
|
||||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists())
|
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists())
|
||||||
# train_store = new_train_storage_df()
|
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists())
|
||||||
|
train_store = new_storage_df('train', None)
|
||||||
|
weight_store = new_storage_df('train', meta_weight_count)
|
||||||
|
|
||||||
metanet.eval()
|
metanet.eval()
|
||||||
accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True)
|
accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True)
|
||||||
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
||||||
Metric='Test Accuracy', Score=accuracy.item())
|
Metric='Test Accuracy', Score=accuracy.item())
|
||||||
|
for particle in metanet.particles:
|
||||||
|
weight_log = (EPOCH, particle.name, *(x for y in particle.parameters() for x in y))
|
||||||
|
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||||
|
|
||||||
train_store.loc[train_store.shape[0]] = validation_log
|
train_store.loc[train_store.shape[0]] = validation_log
|
||||||
train_store.to_csv(df_store_path)
|
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists())
|
||||||
|
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists())
|
||||||
|
|
||||||
if plotting:
|
if plotting:
|
||||||
plot_training_result(df_store_path)
|
plot_training_result(df_store_path)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user