new sanity methode
This commit is contained in:
@ -45,7 +45,7 @@ from functionalities_test import test_for_fixpoints
|
||||
WORKER = 10 if not debug else 2
|
||||
debug = False
|
||||
BATCHSIZE = 500 if not debug else 50
|
||||
EPOCH = 100
|
||||
EPOCH = 50
|
||||
VALIDATION_FRQ = 3 if not debug else 1
|
||||
SELF_TRAIN_FRQ = 1 if not debug else 1
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
@ -279,9 +279,9 @@ if __name__ == '__main__':
|
||||
|
||||
self_train = True
|
||||
training = True
|
||||
train_to_id_first = True
|
||||
train_to_id_first = False
|
||||
train_to_task_first = False
|
||||
train_to_task_first_sequential = False
|
||||
train_to_task_first_sequential = True
|
||||
force_st_for_n_from_last_epochs = 5
|
||||
|
||||
use_sparse_network = False
|
||||
@ -303,10 +303,12 @@ if __name__ == '__main__':
|
||||
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
||||
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}'
|
||||
sprs_str = '_sprs' if use_sparse_network else ''
|
||||
f_str = f'_f_{force_st_for_n_from_last_epochs}' if \
|
||||
force_st_for_n_from_last_epochs and train_to_task_first_sequential and train_to_task_first \
|
||||
else ""
|
||||
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{a_str}{res_str}{id_str}{tsk_str}{f_str}'
|
||||
config_str = f'{a_str}{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
|
||||
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}'
|
||||
|
||||
for seed in range(n_seeds):
|
||||
seed_path = exp_path / str(seed)
|
||||
@ -358,8 +360,8 @@ if __name__ == '__main__':
|
||||
force_st = (force_st_for_n_from_last_epochs >= (EPOCH - epoch)
|
||||
) and train_to_task_first_sequential and force_st_for_n_from_last_epochs
|
||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
||||
# Self Train
|
||||
|
||||
# Self Train
|
||||
if self_train and ((not init_tsk and (is_self_train_epoch or init_st)) or force_st):
|
||||
# Transfer weights
|
||||
if use_sparse_network:
|
||||
@ -376,6 +378,8 @@ if __name__ == '__main__':
|
||||
# Transfer weights
|
||||
if use_sparse_network:
|
||||
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
||||
|
||||
# Task Train
|
||||
if not init_st:
|
||||
# Zero your gradients for every batch!
|
||||
dense_optimizer.zero_grad()
|
||||
|
@ -11,6 +11,11 @@ from torch import optim, Tensor
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def xavier_init(m):
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.xavier_uniform_(m.weight.data)
|
||||
|
||||
|
||||
def prng():
|
||||
return random.random()
|
||||
|
||||
@ -97,6 +102,7 @@ class Net(nn.Module):
|
||||
)
|
||||
|
||||
self._weight_pos_enc_and_mask = None
|
||||
self.apply(xavier_init)
|
||||
|
||||
@property
|
||||
def _weight_pos_enc(self):
|
||||
@ -503,7 +509,7 @@ class MetaNetCompareBaseline(nn.Module):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
metanet = MetaNet(interface=3, depth=5, width=3, out=1, dropout=0.0, residual_skip=True)
|
||||
metanet = MetaNet(interface=3, depth=5, width=3, out=1, residual_skip=True)
|
||||
next(metanet.particles).input_weight_matrix()
|
||||
metanet(torch.hstack([torch.full((2, 1), 1.0) for _ in range(metanet.interface)]))
|
||||
a = metanet.particles
|
||||
|
@ -1,3 +1,5 @@
|
||||
from collections import defaultdict
|
||||
|
||||
from tqdm import tqdm
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
@ -15,18 +17,20 @@ def extract_weights_from_model(model:MetaNet)->dict:
|
||||
inpt[-1] = 1
|
||||
inpt.long()
|
||||
|
||||
weights = {i:[] for i in range(model.depth)}
|
||||
weights = defaultdict(list)
|
||||
layers = [layer.particles for layer in [model._meta_layer_first, *model._meta_layer_list, model._meta_layer_last]]
|
||||
for i,layer in enumerate(layers):
|
||||
for i, layer in enumerate(layers):
|
||||
for net in layer:
|
||||
weights[i].append(net(inpt).detach())
|
||||
return weights
|
||||
return dict(weights)
|
||||
|
||||
def test_weights_as_model(model, weights:dict, data):
|
||||
|
||||
def test_weights_as_model(model, new_weights:dict, data):
|
||||
TransferNet = MetaNetCompareBaseline(model.interface, depth=model.depth, width=model.width, out=model.out)
|
||||
|
||||
with torch.no_grad():
|
||||
for i, weight_set in weights.items():
|
||||
TransferNet._meta_layer_list[i].weight = torch.nn.Parameter(torch.tensor(weight_set).view(list(TransferNet.parameters())[i].shape))
|
||||
for weights, parameters in zip(new_weights.values(), TransferNet.parameters()):
|
||||
parameters[:] = torch.Tensor(weights).view(parameters.shape)[:]
|
||||
|
||||
TransferNet.eval()
|
||||
metric = torchmetrics.Accuracy()
|
||||
@ -56,7 +60,7 @@ if __name__ == '__main__':
|
||||
d_test = DataLoader(mnist_test, batch_size=BATCHSIZE, shuffle=False, drop_last=True, num_workers=WORKER)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
model = torch.load("0039_model_ckpt.tp", map_location=DEVICE).eval()
|
||||
model = torch.load(Path('experiments/output/trained_model_ckpt_e50.tp'), map_location=DEVICE).eval()
|
||||
weights = extract_weights_from_model(model)
|
||||
test_weights_as_model(model, weights, d_test)
|
||||
|
||||
|
@ -120,7 +120,7 @@ class SparseLayer(nn.Module):
|
||||
|
||||
def test_sparse_layer():
|
||||
net = SparseLayer(500) #50 parallel nets
|
||||
loss_fn = torch.nn.MSELoss(reduction="sum")
|
||||
loss_fn = torch.nn.MSELoss()
|
||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
|
||||
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
||||
|
||||
@ -138,9 +138,10 @@ def test_sparse_layer():
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
epsilon = pow(10, -5)
|
||||
# is each of the networks self-replicating?
|
||||
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
|
||||
counter = defaultdict(lambda: 0)
|
||||
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
|
||||
counter = dict(counter)
|
||||
print(f"identity_fn after {train_iteration + 1} self-train epochs: {counter}")
|
||||
|
||||
|
||||
def embed_batch(x, repeat_dim):
|
||||
@ -239,7 +240,7 @@ class SparseNetwork(nn.Module):
|
||||
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||
output = layer(x)
|
||||
|
||||
losses.append(F.mse_loss(output, target_data))
|
||||
losses.append(F.mse_loss(output, target_data) / layer.nr_nets)
|
||||
return torch.hstack(losses).sum(dim=-1, keepdim=True)
|
||||
|
||||
def replace_weights_by_particles(self, particles):
|
||||
@ -269,21 +270,31 @@ def test_sparse_net():
|
||||
|
||||
def test_sparse_net_sef_train():
|
||||
net = SparseNetwork(30, 5, 6, 10)
|
||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.008, momentum=0.9)
|
||||
optimizer_dict = {
|
||||
key: torch.optim.SGD(layer.parameters(), lr=0.008, momentum=0.9) for key, layer in enumerate(net.sparselayers)
|
||||
}
|
||||
epochs = 1000
|
||||
loss_fn = torch.nn.MSELoss(reduction="sum")
|
||||
|
||||
for _ in trange(epochs):
|
||||
for layer, optim in zip(net.sparselayers, optimizer_dict.values()):
|
||||
optim.zero_grad()
|
||||
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||
output = layer(x)
|
||||
loss = loss_fn(output, target_data)
|
||||
if True:
|
||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
|
||||
for _ in trange(epochs):
|
||||
optimizer.zero_grad()
|
||||
loss = net.combined_self_train()
|
||||
print(loss)
|
||||
exit()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
optimizer.step()
|
||||
|
||||
else:
|
||||
optimizer_dict = {
|
||||
key: torch.optim.SGD(layer.parameters(), lr=0.004, momentum=0.9) for key, layer in enumerate(net.sparselayers)
|
||||
}
|
||||
loss_fn = torch.nn.MSELoss(reduction="mean")
|
||||
|
||||
for layer, optim in zip(net.sparselayers, optimizer_dict.values()):
|
||||
for _ in trange(epochs):
|
||||
optim.zero_grad()
|
||||
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||
output = layer(x)
|
||||
loss = loss_fn(output, target_data)
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
# is each of the networks self-replicating?
|
||||
counter = defaultdict(lambda: 0)
|
||||
@ -313,7 +324,7 @@ def test_manual_for_loop():
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sparse_layer()
|
||||
# test_sparse_layer()
|
||||
test_sparse_net_sef_train()
|
||||
# test_sparse_net()
|
||||
# for comparison
|
||||
|
Reference in New Issue
Block a user