new sanity methode
This commit is contained in:
@ -120,7 +120,7 @@ class SparseLayer(nn.Module):
|
||||
|
||||
def test_sparse_layer():
|
||||
net = SparseLayer(500) #50 parallel nets
|
||||
loss_fn = torch.nn.MSELoss(reduction="sum")
|
||||
loss_fn = torch.nn.MSELoss()
|
||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
|
||||
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
|
||||
|
||||
@ -138,9 +138,10 @@ def test_sparse_layer():
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
epsilon = pow(10, -5)
|
||||
# is each of the networks self-replicating?
|
||||
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
|
||||
counter = defaultdict(lambda: 0)
|
||||
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
|
||||
counter = dict(counter)
|
||||
print(f"identity_fn after {train_iteration + 1} self-train epochs: {counter}")
|
||||
|
||||
|
||||
def embed_batch(x, repeat_dim):
|
||||
@ -239,7 +240,7 @@ class SparseNetwork(nn.Module):
|
||||
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||
output = layer(x)
|
||||
|
||||
losses.append(F.mse_loss(output, target_data))
|
||||
losses.append(F.mse_loss(output, target_data) / layer.nr_nets)
|
||||
return torch.hstack(losses).sum(dim=-1, keepdim=True)
|
||||
|
||||
def replace_weights_by_particles(self, particles):
|
||||
@ -269,21 +270,31 @@ def test_sparse_net():
|
||||
|
||||
def test_sparse_net_sef_train():
|
||||
net = SparseNetwork(30, 5, 6, 10)
|
||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.008, momentum=0.9)
|
||||
optimizer_dict = {
|
||||
key: torch.optim.SGD(layer.parameters(), lr=0.008, momentum=0.9) for key, layer in enumerate(net.sparselayers)
|
||||
}
|
||||
epochs = 1000
|
||||
loss_fn = torch.nn.MSELoss(reduction="sum")
|
||||
|
||||
for _ in trange(epochs):
|
||||
for layer, optim in zip(net.sparselayers, optimizer_dict.values()):
|
||||
optim.zero_grad()
|
||||
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||
output = layer(x)
|
||||
loss = loss_fn(output, target_data)
|
||||
if True:
|
||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
|
||||
for _ in trange(epochs):
|
||||
optimizer.zero_grad()
|
||||
loss = net.combined_self_train()
|
||||
print(loss)
|
||||
exit()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
optimizer.step()
|
||||
|
||||
else:
|
||||
optimizer_dict = {
|
||||
key: torch.optim.SGD(layer.parameters(), lr=0.004, momentum=0.9) for key, layer in enumerate(net.sparselayers)
|
||||
}
|
||||
loss_fn = torch.nn.MSELoss(reduction="mean")
|
||||
|
||||
for layer, optim in zip(net.sparselayers, optimizer_dict.values()):
|
||||
for _ in trange(epochs):
|
||||
optim.zero_grad()
|
||||
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||
output = layer(x)
|
||||
loss = loss_fn(output, target_data)
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
# is each of the networks self-replicating?
|
||||
counter = defaultdict(lambda: 0)
|
||||
@ -313,7 +324,7 @@ def test_manual_for_loop():
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sparse_layer()
|
||||
# test_sparse_layer()
|
||||
test_sparse_net_sef_train()
|
||||
# test_sparse_net()
|
||||
# for comparison
|
||||
|
Reference in New Issue
Block a user