StackPlot
This commit is contained in:
@@ -37,7 +37,7 @@
|
|||||||
- Es entstehen mehr SRNN
|
- Es entstehen mehr SRNN
|
||||||
- Der Dropout Effekt wird stärker (diff_ohne_SRNN = _0.0_)
|
- Der Dropout Effekt wird stärker (diff_ohne_SRNN = _0.0_)
|
||||||

|

|
||||||
- [ ] Weiter Trainieren -> 500 Epochs?
|
- [X] Weiter Trainieren -> 500 Epochs?
|
||||||
- [ ] Loss Gewichtung anpassen
|
- [ ] Loss Gewichtung anpassen
|
||||||
- [x] Training ohne Residual Skip Connection
|
- [x] Training ohne Residual Skip Connection
|
||||||
- Ist kacke
|
- Ist kacke
|
||||||
|
|||||||
@@ -37,11 +37,11 @@ else:
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
from network import MetaNet
|
from network import MetaNet
|
||||||
from functionalities_test import test_for_fixpoints
|
from functionalities_test import test_for_fixpoints, FixTypes
|
||||||
|
|
||||||
WORKER = 10 if not debug else 2
|
WORKER = 10 if not debug else 2
|
||||||
BATCHSIZE = 500 if not debug else 50
|
BATCHSIZE = 500 if not debug else 50
|
||||||
EPOCH = 100 if not debug else 3
|
EPOCH = 400 if not debug else 3
|
||||||
VALIDATION_FRQ = 5 if not debug else 1
|
VALIDATION_FRQ = 5 if not debug else 1
|
||||||
SELF_TRAIN_FRQ = 1 if not debug else 1
|
SELF_TRAIN_FRQ = 1 if not debug else 1
|
||||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
@@ -131,7 +131,30 @@ def checkpoint_and_validate(model, out_path, epoch_n, final_model=False):
|
|||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def plot_training_particle_types(path_to_dataframe):
|
||||||
|
plt.clf()
|
||||||
|
# load from Drive
|
||||||
|
df = pd.read_csv(path_to_dataframe, index_col=False)
|
||||||
|
# Set up figure
|
||||||
|
fig, ax = plt.subplots() # initializes figure and plots
|
||||||
|
data = df[df['Metric'].isin(FixTypes.all_types())]
|
||||||
|
fix_types = data['Metric'].unique()
|
||||||
|
data = data.pivot(index='Epoch', columns='Metric', values='Score').reset_index().fillna(0)
|
||||||
|
_ = plt.stackplot(data['Epoch'], *[data[fixtype] for fixtype in fix_types], labels=fix_types.tolist())
|
||||||
|
|
||||||
|
ax.set(ylabel='Particle Count', xlabel='Epoch')
|
||||||
|
ax.set_title('Particle Type Count')
|
||||||
|
|
||||||
|
fig.legend(loc="center right", title='Particle Type', bbox_to_anchor=(0.85, 0.5))
|
||||||
|
plt.tight_layout()
|
||||||
|
if debug:
|
||||||
|
plt.show()
|
||||||
|
else:
|
||||||
|
plt.savefig(Path(path_to_dataframe.parent / 'training_particle_type_lp.png'), dpi=300)
|
||||||
|
|
||||||
|
|
||||||
def plot_training_result(path_to_dataframe):
|
def plot_training_result(path_to_dataframe):
|
||||||
|
plt.clf()
|
||||||
# load from Drive
|
# load from Drive
|
||||||
df = pd.read_csv(path_to_dataframe, index_col=False)
|
df = pd.read_csv(path_to_dataframe, index_col=False)
|
||||||
|
|
||||||
@@ -163,6 +186,7 @@ def plot_training_result(path_to_dataframe):
|
|||||||
else:
|
else:
|
||||||
plt.savefig(Path(path_to_dataframe.parent / 'training_lineplot.png'), dpi=300)
|
plt.savefig(Path(path_to_dataframe.parent / 'training_lineplot.png'), dpi=300)
|
||||||
|
|
||||||
|
|
||||||
def flat_for_store(parameters):
|
def flat_for_store(parameters):
|
||||||
return (x.item() for y in parameters for x in y.detach().flatten())
|
return (x.item() for y in parameters for x in y.detach().flatten())
|
||||||
|
|
||||||
@@ -170,7 +194,7 @@ def flat_for_store(parameters):
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
||||||
self_train = True
|
self_train = True
|
||||||
training = True
|
training = False
|
||||||
plotting = True
|
plotting = True
|
||||||
particle_analysis = True
|
particle_analysis = True
|
||||||
as_sparse_network_test = True
|
as_sparse_network_test = True
|
||||||
@@ -265,6 +289,13 @@ if __name__ == '__main__':
|
|||||||
weight_store = new_storage_df('weights', meta_weight_count)
|
weight_store = new_storage_df('weights', meta_weight_count)
|
||||||
|
|
||||||
metanet.eval()
|
metanet.eval()
|
||||||
|
if particle_analysis:
|
||||||
|
counter_dict = defaultdict(lambda: 0)
|
||||||
|
# This returns ID-functions
|
||||||
|
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||||
|
for key, value in dict(counter_dict).items():
|
||||||
|
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||||
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True)
|
accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True)
|
||||||
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
||||||
Metric='Test Accuracy', Score=accuracy.item())
|
Metric='Test Accuracy', Score=accuracy.item())
|
||||||
@@ -278,33 +309,35 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
if plotting:
|
if plotting:
|
||||||
plot_training_result(df_store_path)
|
plot_training_result(df_store_path)
|
||||||
|
|
||||||
if particle_analysis:
|
if particle_analysis:
|
||||||
model_path = next(run_path.glob(f'*e100.tp'))
|
plot_training_particle_types(df_store_path)
|
||||||
|
exit()
|
||||||
|
if particle_analysis:
|
||||||
|
model_path = next(run_path.glob(f'*e{EPOCH}.tp'))
|
||||||
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
||||||
counter_dict = defaultdict(lambda: 0)
|
counter_dict = defaultdict(lambda: 0)
|
||||||
_ = test_for_fixpoints(counter_dict, list(latest_model.particles))
|
_ = test_for_fixpoints(counter_dict, list(latest_model.particles))
|
||||||
tqdm.write(str(dict(counter_dict)))
|
tqdm.write(str(dict(counter_dict)))
|
||||||
zero_ident = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero('identity_func')
|
|
||||||
zero_other = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero('other_func')
|
|
||||||
if as_sparse_network_test:
|
if as_sparse_network_test:
|
||||||
acc_pre = validate(model_path, ratio=0.01).item()
|
acc_pre = validate(model_path, ratio=1).item()
|
||||||
ident_ckpt = set_checkpoint(zero_ident, model_path.parent, -1, final_model=True)
|
diff_table = pd.DataFrame(columns=['Particle Type', 'Accuracy', 'Diff'])
|
||||||
ident_acc_post = validate(ident_ckpt, ratio=0.01).item()
|
for fixpoint_type in FixTypes.all_types():
|
||||||
tqdm.write(f'Zero_ident diff = {abs(ident_acc_post-acc_pre)}')
|
new_model = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero(fixpoint_type)
|
||||||
other_ckpt = set_checkpoint(zero_other, model_path.parent, -2, final_model=True)
|
new_ckpt = set_checkpoint(new_model, model_path.parent, fixpoint_type, final_model=True)
|
||||||
other_acc_post = validate(other_ckpt, ratio=0.01).item()
|
acc_post = validate(new_ckpt, ratio=1).item()
|
||||||
tqdm.write(f'Zero_other diff = {abs(other_acc_post - acc_pre)}')
|
acc_diff = abs(acc_post-acc_pre)
|
||||||
|
tqdm.write(f'Zero_ident diff = {acc_diff}')
|
||||||
|
diff_table.iloc[diff_table.shape[0]] = (fixpoint_type, acc_post, acc_diff)
|
||||||
|
|
||||||
if plotting:
|
if plotting:
|
||||||
plt.clf()
|
plt.clf()
|
||||||
fig, ax = plt.subplots(ncols=2)
|
fig, ax = plt.subplots(ncols=2)
|
||||||
data = [acc_pre, ident_acc_post, other_acc_post]
|
|
||||||
labels = ['Full Network', 'Sparse, No Identity', 'Sparse, No Other']
|
labels = ['Full Network', 'Sparse, No Identity', 'Sparse, No Other']
|
||||||
for idx, (score, name) in enumerate(zip(data, labels)):
|
barplot = sns.barplot(data=diff_table, y='Accurady', x=['Particle Type'],
|
||||||
l = sns.barplot(y=[score], x=['Networks'], color=sns.color_palette()[idx], label=name, ax=ax[0])
|
color=sns.color_palette()[:diff_table.shape[0]], ax=ax[0])
|
||||||
# noinspection PyUnboundLocalVariable
|
# noinspection PyUnboundLocalVariable
|
||||||
for idx, patch in enumerate(l.patches):
|
for idx, patch in enumerate(barplot.patches):
|
||||||
if idx != 0:
|
if idx != 0:
|
||||||
# we recenter the bar
|
# we recenter the bar
|
||||||
patch.set_x(patch.get_x() + idx * 0.035)
|
patch.set_x(patch.get_x() + idx * 0.035)
|
||||||
@@ -313,7 +346,6 @@ if __name__ == '__main__':
|
|||||||
ax[0].set_xlabel('Accuracy')
|
ax[0].set_xlabel('Accuracy')
|
||||||
# ax[0].legend()
|
# ax[0].legend()
|
||||||
|
|
||||||
counter_dict['full_network'] = sum(counter_dict.values())
|
|
||||||
ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=sns.color_palette()[:3], )
|
ax[1].pie(counter_dict.values(), labels=counter_dict.keys(), colors=sns.color_palette()[:3], )
|
||||||
ax[1].set_title('Particle Count for ')
|
ax[1].set_title('Particle Count for ')
|
||||||
# ax[1].set_xlabel('')
|
# ax[1].set_xlabel('')
|
||||||
|
|||||||
@@ -6,6 +6,19 @@ from tqdm import tqdm
|
|||||||
from network import Net
|
from network import Net
|
||||||
|
|
||||||
|
|
||||||
|
class FixTypes:
|
||||||
|
|
||||||
|
divergent = 'divergent'
|
||||||
|
fix_zero = 'fix_zero'
|
||||||
|
identity_func = 'identity_func'
|
||||||
|
fix_sec = 'fix_sec'
|
||||||
|
other_func = 'other_func'
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def all_types(cls):
|
||||||
|
return [val for key, val in cls.__dict__.items() if isinstance(val, str) and not key.startswith('_')]
|
||||||
|
|
||||||
|
|
||||||
def is_divergent(network: Net) -> bool:
|
def is_divergent(network: Net) -> bool:
|
||||||
return network.input_weight_matrix().isinf().any().item() or network.input_weight_matrix().isnan().any().item()
|
return network.input_weight_matrix().isinf().any().item() or network.input_weight_matrix().isnan().any().item()
|
||||||
|
|
||||||
@@ -16,7 +29,6 @@ def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool:
|
|||||||
target_data = network.create_target_weights(input_data)
|
target_data = network.create_target_weights(input_data)
|
||||||
predicted_values = network(input_data)
|
predicted_values = network(input_data)
|
||||||
|
|
||||||
|
|
||||||
return torch.allclose(target_data.detach(), predicted_values.detach(),
|
return torch.allclose(target_data.detach(), predicted_values.detach(),
|
||||||
rtol=0, atol=epsilon)
|
rtol=0, atol=epsilon)
|
||||||
|
|
||||||
@@ -57,21 +69,21 @@ def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None):
|
|||||||
|
|
||||||
for net in tqdm(nets, desc='Fixpoint Tester', total=len(nets)):
|
for net in tqdm(nets, desc='Fixpoint Tester', total=len(nets)):
|
||||||
if is_divergent(net):
|
if is_divergent(net):
|
||||||
fixpoint_counter["divergent"] += 1
|
fixpoint_counter[FixTypes.divergent] += 1
|
||||||
net.is_fixpoint = "divergent"
|
net.is_fixpoint = FixTypes.divergent
|
||||||
elif is_identity_function(net): # is default value
|
elif is_identity_function(net): # is default value
|
||||||
fixpoint_counter["identity_func"] += 1
|
fixpoint_counter[FixTypes.identity_func] += 1
|
||||||
net.is_fixpoint = "identity_func"
|
net.is_fixpoint = FixTypes.identity_func
|
||||||
id_functions.append(net)
|
id_functions.append(net)
|
||||||
elif is_zero_fixpoint(net):
|
elif is_zero_fixpoint(net):
|
||||||
fixpoint_counter["fix_zero"] += 1
|
fixpoint_counter[FixTypes.fix_zero] += 1
|
||||||
net.is_fixpoint = "fix_zero"
|
net.is_fixpoint = FixTypes.fix_zero
|
||||||
elif is_secondary_fixpoint(net):
|
elif is_secondary_fixpoint(net):
|
||||||
fixpoint_counter["fix_sec"] += 1
|
fixpoint_counter[FixTypes.fix_sec] += 1
|
||||||
net.is_fixpoint = "fix_sec"
|
net.is_fixpoint = FixTypes.fix_sec
|
||||||
else:
|
else:
|
||||||
fixpoint_counter["other_func"] += 1
|
fixpoint_counter[FixTypes.other_func] += 1
|
||||||
net.is_fixpoint = "other_func"
|
net.is_fixpoint = FixTypes.other_func
|
||||||
return id_functions
|
return id_functions
|
||||||
|
|
||||||
|
|
||||||
@@ -82,14 +94,14 @@ def changing_rate(x_new, x_old):
|
|||||||
def test_status(net: Net) -> Net:
|
def test_status(net: Net) -> Net:
|
||||||
|
|
||||||
if is_divergent(net):
|
if is_divergent(net):
|
||||||
net.is_fixpoint = "divergent"
|
net.is_fixpoint = FixTypes.divergent
|
||||||
elif is_identity_function(net): # is default value
|
elif is_identity_function(net): # is default value
|
||||||
net.is_fixpoint = "identity_func"
|
net.is_fixpoint = FixTypes.identity_func
|
||||||
elif is_zero_fixpoint(net):
|
elif is_zero_fixpoint(net):
|
||||||
net.is_fixpoint = "fix_zero"
|
net.is_fixpoint = FixTypes.fix_zero
|
||||||
elif is_secondary_fixpoint(net):
|
elif is_secondary_fixpoint(net):
|
||||||
net.is_fixpoint = "fix_sec"
|
net.is_fixpoint = FixTypes.fix_sec
|
||||||
else:
|
else:
|
||||||
net.is_fixpoint = "other_func"
|
net.is_fixpoint = FixTypes.other_func
|
||||||
|
|
||||||
return net
|
return net
|
||||||
|
|||||||
Reference in New Issue
Block a user